Effective repair of a vascular injury depends on establishment of a stable fibrin patch at the injury site. Data presented in this study demonstrate that structural modification of fibrin occurs as a result of fibrin interaction with naturally occurring components of the vascular basement membrane and subendothelial structures. Of the basement membrane components, type IV collagen produces the greatest structural modification, generating thick fibrin fibers; a 3-fold increase in the fiber mass/length ratio occurs when type IV collagen is increased from 0 to 100 ng/ml. Laminin and dermatan sulfate decrease the fibrin fiber mass/length ratio resulting in thinner fibers. However, the overall effect of the basement membrane on fibrin is to increase the fibrin fiber diameter. Electrophoretic light scattering and the binding of type IV collagen by fibrinogen-Sepharose further establish the interaction between type IV collagen and fibrinogen. Incorporation of laminin with type IV collagen onto coated surfaces decreases the ability of type IV collagen to bind fibrinogen. These studies emphasize that the final fibrin structure is influenced by the milieu in which the clot is assembled.

Download full-text PDF

Source

Publication Analysis

Top Keywords

type collagen
28
basement membrane
16
fibrin
10
membrane components
8
structural modification
8
fiber mass/length
8
mass/length ratio
8
fibrin fiber
8
type
7
collagen
7

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.

View Article and Find Full Text PDF

A Novel COL7A1 Mutation in a Patient With Dystrophic Epidermolysis Bullosa. Successful Treatment With Upadacitinib.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.

Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!