The Mexican Axolotl is able to regenerate missing limb structures in any position along the limb axis throughout its life and serves as an excellent model to understand the basic mechanisms of endogenous regeneration. How the new pattern of the regenerating axolotl limb is established has not been completely resolved. An accumulating body of evidence indicates that pattern formation occurs in a hierarchical fashion, which consists of two different types of positional communications. The first type (Type 1) of communication occurs between connective tissue cells, which retain memory of their original pattern information and use this memory to generate the pattern of the regenerate. The second type (Type 2) of communication occurs from connective tissue cells to other cell types in the regenerate, which don't retain positional memory themselves and arrange themselves according to these positional cues. Previous studies suggest that molecules within the extracellular matrix (ECM) participate in pattern formation in developing and regenerating limbs. However, it is unclear whether these molecules play a role in Type 1 or Type 2 positional communications. Utilizing the Accessory Limb Model, a regenerative assay, and transcriptomic analyses in regenerates that have been reprogrammed by treatment with Retinoic Acid, our data indicates that the ECM likely facilities Type-2 positional communications during limb regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935289PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248051PLOS

Publication Analysis

Top Keywords

positional communications
12
type type
12
positional cues
8
axolotl limb
8
limb regeneration
8
pattern formation
8
type communication
8
communication occurs
8
occurs connective
8
connective tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!