The CRISPR/Cas9 bacterial system has proven to be an powerful tool for genetic manipulation in several organisms, but the efficiency of sequence replacement by homologous direct repair (HDR) is substantially lower than random indel creation. Many studies focused on improving HDR efficiency using double sgRNA, cell synchronization cycle, and the delivery of single-stranded oligo DNA nucleotides (ssODN) with a rational design. In this study, we evaluate these three methods' synergistic effects to improve HDR efficiency. For our tests, we have chosen the TNFα gene (NM_000594) for its crucial role in various biological processes and diseases. For the first time, our results showed how the use of two sgRNA with asymmetric donor design and triple transfection events dramatically increase the HDR efficiency from an undetectable HDR event to 39% of HDR efficiency and provide a new strategy to facilitate CRISPR/Cas9-mediated human genome editing. Besides, we demonstrated that the TNFα locus could be edited with CRISPR/Cas9 methodology, an opportunity to safely correct, in the future, the specific mutations of each patient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935300 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247603 | PLOS |
Sci Rep
January 2025
Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Key Laboratory of Animal Biotechnology of Xinjiang, Ministry of Agriculture(MOA), Urumqi, 830026, Xinjiang, China.
CRISPR/Cas9 technology has been widely utilized to enhance productive performance, increase disease resistance and generate medical models in livestock. The FecB allele in sheep is a mutation in the BMPRIB gene, recognized as the first major gene responsible for the high fecundity trait in sheep, leading to an increased ovulation rate in ewe. In this study, we employed CRISPR/Cas9-mediated homologous-directed repair (HDR) to introduce a defined point mutation (c.
View Article and Find Full Text PDFCommun Biol
January 2025
Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
CRISPR-Cas9 genome editing has been extensively applied in both academia and clinical settings, but its genotoxic risks, including large insertions (LgIns), remain poorly studied due to methodological limitations. This study presents the first detailed report of unintended LgIns consistently induced by different Cas9 editing regimes using various types of donors across multiple gene loci. Among these insertions, retrotransposable elements (REs) and host genomic coding and regulatory sequences are prevalent.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biotechnology and Food Science, Durban University of Technology, Durban 4001, South Africa.
Anaerobic digestion is a crucial process in wastewater treatment, renowned for its sustainable biogas production capabilities and the simultaneous reduction of environmental pollution. However, dysregulation of vital biological processes and pathways can lead to reduced efficiency and suboptimal biogas output, which can be seen through low counts per million of sequences related to three critical control points for methane synthesis. Namely, tetrahydromethanopterin S-methyltransferase (MTR), methyl-coenzyme reductase M (MCR), and CoB/CoM heterodisulfide oxidoreductase (HDR) are the last reactions that must occur.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
McGill university, Montreal, Qc, Canada.
Purpose: High dose rate (HDR) prostate brachytherapy (BT) procedure requires image-guided needle insertion. Given that general anesthesia is often employed during the procedure, minimizing overall planning time is crucial. In this study, we explore the clinical feasibility and time-saving potential of artificial intelligence (AI)-driven auto-reconstruction of transperineal needles in the context of US-guided prostate BT planning.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
Poplar is an important tree species for timber supply and ecological protection in northern China. Cultivating and selecting high-quality varieties and germplasm resources suitable for cultivation are key factors in enhancing the quality and productivity of poplar plantations in the arid and semi-arid northern regions with shorter growing seasons. This study conducted a field cultivation experiment on 10 progeny clones from the direct cross (D × M) of imported 'DD-109' with and 7 progeny clones from the reciprocal cross (M × D) using one-year-old rooted cuttings planted at a 4 m × 8 m spacing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!