Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phenotype Prediction Scores (PPS) might be powerful tools to predict traits or the efficacy of treatments based on combinations of Single-Nucleotide Polymorphism (SNPs) in large samples. We developed a novel method to produce PPS models for small samples sizes. The set of SNPs is first filtered on those known to be relevant in biological pathways involved in a clinical condition, and then further filtered repeatedly in a survival strategy to select stabile positive/negative risk alleles. This method is applied on Female Sexual Interest/Arousal Disorder (FSIAD), for which two subtypes has been proposed: 1) a relatively insensitive excitatory system in the brain for sexual cues, and 2) a dysfunctional activation of brain mechanisms for sexual inhibition. A double-blind, randomized, placebo-controlled cross-over experiment was conducted on 129 women with FSIAD. The women received three different on-demand drug-combination treatments during 3 two-week periods: testosterone (0.5 mg) + sildenafil (50 mg), testosterone (0.5 mg) + buspirone (10 mg), or matching placebos. The resulted PPS were independently validated on patient-level and group-level. The AUC scores for T+S of the derivation set was 0.867 (95% CI = 0.796-0.939; p<0.001) and was 0.890 (95% CI = 0.778-1.000; p<0.001) on the validation set. For T+B the AUC of the derivation set was 0.957 (95% CI = 0.921-0.992; p<0.001) and 0.869 (95% CI = 0.746-0.992; p<0.001) for the validation set. Both formulas could reliably predict for each drug who benefit from the on-demand drugs and could therefore be useful in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935233 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246828 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!