In the field of information visualization, the concept of "tasks" is an essential component of theories and methodologies for how a visualization researcher or a practitioner understands what tasks a user needs to perform and how to approach the creation of a new design. In this article, we focus on the collection of tasks for tree visualizations, a common visual encoding in many domains ranging from biology to computer science to geography. In spite of their commonality, no prior efforts exist to collect and abstractly define tree visualization tasks. We present a literature review of tree visualization articles and generate a curated dataset of over 200 tasks. To enable effective task abstraction for trees, we also contribute a novel extension of the Multi-Level Task Typology to include more specificity to support tree-specific tasks as well as a systematic procedure to conduct task abstractions for tree visualizations. All tasks in the dataset were abstracted with the novel typology extension and analyzed to gain a better understanding of the state of tree visualizations. These abstracted tasks can benefit visualization researchers and practitioners as they design evaluation studies or compare their analytical tasks with ones previously studied in the literature to make informed decisions about their design. We also reflect on our novel methodology and advocate more broadly for the creation of task-based knowledge repositories for different types of visualizations. The Supplemental Material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2021.3064037, will be maintained on OSF: https://osf.io/u5ehs/.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2021.3064037DOI Listing

Publication Analysis

Top Keywords

tree visualizations
12
tasks
9
tasks tree
8
design evaluation
8
tree visualization
8
tree
6
visualization
5
state-of-the-art survey
4
survey tasks
4
design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!