Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The celebrated Meyer-Miller mapping model has been a useful approach for generating practical trajectory-based nonadiabatic dynamics methods. It is generally assumed that the zero-point-energy (ZPE) parameter is positive. The constraint implied in the conventional Meyer-Miller mapping Hamiltonian for an -electronic-state system actually requires γ∈(-1/, ∞) for the ZPE parameter for each electronic degree of freedom. Both negative and positive values are possible for such a parameter. We first establish a rigorous formulation to construct exact mapping models in the Cartesian phase space when the constraint is applied. When nuclear dynamics is approximated by the linearized semiclassical initial value representation, a negative ZPE parameter could lead to reasonably good performance in describing dynamic behaviors in typical spin-boson models for condensed-phase two-state systems, even at challenging zero temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c00232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!