Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There has been a recent drive to develop non-fluorinated superhydrophobic coatings due to the toxicity, cost, and environmental impact of perfluorinated components. One of the main challenges in developing superhydrophobic coatings in general and non-fluorinated superhydrophobic coatings in particular is optimization of mechanical durability, as the rough asperities required for maintaining superhydrophobicity tend to be easily removed by abrasion. Although rough and self-similar hydrophobic surfaces composed of loosely adhered particles or highly porous structures tend to produce excellent superhydrophobicity, they have low inherent mechanical durability and their longevity under real conditions is compromised. To address this issue, this work investigates the addition of a polymeric matrix material (the binder) to hydrophobic nanoparticles (the filler) to produce spray-coated superhydrophobic surfaces with improved inherent mechanical durability. Hansen solubility parameters were used to tune the interactions between the binder, filler, and solvent used to deliver the coating. It was found that lowering the binder/filler miscibility and using a poor solvent mixture generates more surface roughness, thereby lowering the minimum filler load required to achieve superhydrophobicity. This leads to an overall more inherently durable system that remains hydrophobic for thousands of light abrasion cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c03455 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!