Through network pharmacology research, we found that CYP19, CYP17, AR and SRD5A2 were potential targets for lycium chinense-cuscutae semen (LC-CS) treatment of oligoasthenozoospermia. Using in vitro and in vivo experiments, tripterygium glycosides were used to induce spermatogenic dysfunction models in GC-1spg cells and SD male rats, respectively, and LC-CS was used to intervene in a spermatogenic dysfunction model. In vitro, LC-CS could repair the ultrastructure of GC-1spg cells damaged by tripterygium glycosides (TG). Compared with TG group, LC-CS could upregulate protein and mRNA expression of CYP19, CYP17, AR and SRD5A2. In vivo, compared with TG, the body mass, testicular mass and epididymal weights of rats in TG + LC-CS increased. Progressive motility + nonprogressive motility spermatozoon (PR + NP) of TG + LC-CS were upregulate than TG. The levels of FSH, LH and testosterone in TG + LC-CS were upregulate than TG. LC-CS can repair the ultrastructure of spermatogonia damaged by TG (the above results are statistically significant, p <.05). Results of H&E staining and TEM showed that the morphology and ultrastructure of testicular tissue in TG + LC-CS were better than that in TG. Compared with TG, LC-CS could upregulate the expression of CYP19, CYP17, AR and SRD5A2 proteins and mRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/and.14014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!