With limited clinical resources, burgeoning testing requests from Army and other Service units to clinical laboratories, and the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the military population, the Army Public Health Laboratory (APHL) Enterprise was tasked to establish surveillance testing capabilities for active duty military populations in an expedient manner. Following a proof-of-concept study conducted by Public Health Command-Pacific, Public Health Command-Europe was the first public health laboratory to offer the capability to assess for SARS-CoV-2 in pooled samples, followed closely by the Army Public Health Center (APHC) at Aberdeen Proving Grounds, MD, paralleling the spread of the SARS-CoV-2 virus from China to Europe to the continental US. The APHLs have selected pool sizes of up to 10 samples per pool based on the best evidence available at the time of method development and validation. Real-Time quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) assays using RNA extracts from pooled nasopharyngeal swabs preserved in viral transport media were selected to assess the presence of SARS-CoV-2. The rapid development of initial surveillance testing capabilities depended on existing equipment in each laboratory, with a plan to implement full operational capability using additional staff and common high-throughput platforms. APHL Enterprise has successfully used existing resources to begin to address the changing and complex needs for COVID-19 testing within the Army population. Successful implementation of pooled surveillance testing at the APHC Laboratory has enabled more than 8,600 Soldiers to avoid clinical testing to date. The APHC Laboratory alone has tested over 10,000 samples and prevented approximately 8,600 soldiers from seeking testing with clinical diagnostic assays.

Download full-text PDF

Source

Publication Analysis

Top Keywords

public health
28
surveillance testing
16
army public
16
health laboratory
12
testing
8
health center
8
aphl enterprise
8
testing capabilities
8
testing aphc
8
aphc laboratory
8

Similar Publications

Stimulant-involved overdose deaths: Constructing dynamic hypotheses.

Int J Drug Policy

January 2025

MGH Institute for Technology Assessment, Harvard Medical School, Boston, MA, 02144, USA. Electronic address:

The overdose epidemic in the United States is evolving, with a rise in stimulant (cocaine and/or methamphetamine)-only and opioid and stimulant-involved overdose deaths for reasons that remain unclear. We conducted interviews and group model building workshops in Massachusetts and South Dakota. Building on these data and extant research, we identified six dynamic hypotheses, explaining changes in stimulant-involved overdose trends, visualized using causal loop diagrams.

View Article and Find Full Text PDF

Influenza accounts for 30% of the total morbidity and mortality in the European Union. However, the specific burden in different European countries is largely unknown, and more research is needed to ascertain the reality of this disease. In this retrospective study, we analyzed the burdens of hospitalization, intensive care unit (ICU) admission and in-hospital mortality in Spain over five seasons (2015-2020) via publicly available Minimum Basic Datasets (MDBS).

View Article and Find Full Text PDF

In this work, we investigate the dynamics of a discrete-time prey-predator model considering a prey reproductive response as a function of the predation risk, with the prey population growth factor governed by two parameters. The system can evolve toward scenarios of mutual or only of predators extinction, or species coexistence. We analytically show all different types of equilibrium points depending on the ranges of growth parameters.

View Article and Find Full Text PDF

Effects of Noise and Public Setting on Blood Pressure Readings : A Randomized Crossover Trial.

Ann Intern Med

January 2025

Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore; and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (T.M.B.).

Background: Guidelines emphasize quiet settings for blood pressure (BP) measurement.

Objective: To determine the effect of noise and public environment on BP readings.

Design: Randomized crossover trial of adults in Baltimore, Maryland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!