Estimation of rainwater harvesting by the reflectance of the purity index of rainfall.

Environ Sci Pollut Res Int

Kuala Terengganu Polytechnic, Jalan Sultan Ismail, 20200, Kuala Terengganu, Terengganu, Malaysia.

Published: July 2021

Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-12772-6DOI Listing

Publication Analysis

Top Keywords

rainwater harvesting
8
purity rainfall
8
physicochemical properties
8
properties rainfall
8
peninsular malaysia
8
pri cluster
8
rainfall
5
estimation rainwater
4
harvesting reflectance
4
reflectance purity
4

Similar Publications

This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.

View Article and Find Full Text PDF

Water quality assessment of rooftop harvested rainwater across different roof types in a semi-arid region of South Africa.

Water Environ Res

January 2025

Water and Environmental Management Research Group, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa.

Uneven distribution of precipitation and climate change have led to water shortages, adversely impacting numerous countries worldwide. Rooftop rainwater harvesting (RWH) has emerged as a crucial method for providing water for domestic uses. However, there are concerns about the quality of rainwater collected from roofs, as it may be contaminated with pollutants such as metals and microbiological pathogens.

View Article and Find Full Text PDF

A new approach on design and verification of integrated sustainable urban drainage systems for stormwater management in urban areas.

J Environ Manage

January 2025

Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:

Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.

View Article and Find Full Text PDF

Simple and effective filtration system for drinking water production from harvested rainwater in rural areas.

J Environ Manage

January 2025

School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.

Rainwater harvesting (RWH) for drinking water production has been a potential solution to mitigate water scarcity in rural areas. There was limited research focusing on the quality of treated rainwater. This study developed and tested the quality of a drinking water filtration system (DWFS) for treating harvested rainwater to support rural communities.

View Article and Find Full Text PDF

Enhancing rainwater harvesting efficiency in karst terrains: The role of road intercepted soil-epikarst lateral flow.

J Environ Manage

January 2025

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station of Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China. Electronic address:

In karst landscapes, where sustainable water management is increasingly challenged by drought-induced water scarcity, the adoption of road-based rainwater harvesting (RBWH) systems has emerged as a promising solution for improving water accessibility. Despite the growing implementation of such systems, the effectiveness of many RBWH projects in karst terrains remains suboptimal due to an inadequate understanding of runoff generation mechanisms associated with hilly road networks. This study focuses on quantifying the contributions of intercepted surface runoff (SR) and soil-epikarst lateral flow (SEF) from a newly exposed road-cut slope in a dolomite hillslope, with data collected across 156 rainfall events from May 2019 to May 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!