Several subtypes of avian influenza (AI) viruses have caused human infections in recent years; however, there is a severe knowledge gap regarding the capacity of wild bird viruses to infect mammals. To assess the risk of mammalian infection by AI viruses from their natural reservoirs, a panel of isolates from 34 wild birds was examined in animal models. All selected AI virus subtypes were found to predominantly possess Eurasian lineage, although reassortment with North American lineage AI viruses was also noted in some isolates. When used to infect chickens, 20 AI isolates could be recovered from oropharyngeal swabs at 5 days post-infection (dpi) without causing significant morbidity. Similarly, mild to no observable disease was observed in mice infected with these viruses although the majority replicated efficiently in murine lungs. As expected, wild bird AI isolates were found to recognize avian-like receptors, while a few strains also exhibited detectable human-like receptor binding. Selected strains were further tested in ferrets, and 15 out of 20 were found to shed the virus in the upper respiratory tract until 5 dpi. Overall, we demonstrate that a diversity of low-pathogenic AI viruses carried by wild migratory birds have the capacity to infect land-based poultry and mammalian hosts while causing minimal signs of clinical disease. This study reiterates that there is a significant capacity for interspecies transmission of AI viruses harboured by wild aquatic birds. Thus, these viruses pose a significant threat to human health underscoring the need for continued surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018353PMC
http://dx.doi.org/10.1080/22221751.2021.1899769DOI Listing

Publication Analysis

Top Keywords

viruses
9
avian influenza
8
influenza viruses
8
migratory birds
8
wild bird
8
wild
5
pathogenic assessment
4
assessment avian
4
viruses migratory
4
birds
4

Similar Publications

IL-17 as a putative hallmark of intense arthralgia and age-related serum immune mediator networks during acute chikungunya fever.

Inflamm Res

January 2025

Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, MG, Brazil.

Introduction: The present study aimed at evaluating the systemic profile and network connectivity of immune mediators during acute chikungunya fever (CHIKF) according to days of symptoms onset and ageing.

Methods: A total of 161 volunteers (76 CHIKF patients and 85 non-infected healthy controls) were enrolled.

Results And Discussion: Data demonstrated that a massive and polyfunctional storm of serum immune mediators was observed in CHIKF.

View Article and Find Full Text PDF

Introduction: We sought to explore the variability of antibody responses to multiple vaccines during early life in individual children, assess the trajectory of each child longitudinally, determine the associations of demographic variables and antibiotic exposures with vaccine-induced immunity, and link vaccine responsiveness to infection proneness.

Methods: In 357 prospectively-recruited children, age six through 36 months, antibody levels to 13 routine vaccine antigens were measured in sera at multiple time points and normalized to their respective protective thresholds to categorize children into four groups: very low, low, normal, and high vaccine responder. Demographic variables and frequency of antibiotic exposure data were collected.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Synthetic rational design of live-attenuated Zika viruses based on a computational model.

Nucleic Acids Res

January 2025

SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.

Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!