A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Geometrical remodeling of the mitral and tricuspid annuli in response to exercise training: a 3-D echocardiographic study in elite athletes. | LitMetric

AI Article Synopsis

  • Intense exercise leads to significant changes in heart structure and function, but the impact on atrioventricular valves isn't well understood.
  • A study compared the geometry of mitral and tricuspid valves in elite athletes, revealing that those with functional mitral regurgitation (FMR) had larger valve areas and different geometrical characteristics than those without FMR.
  • The findings suggest that regular exercise results in not only enlargement of the valves but also structural adaptations, highlighting differences in heart function among athletes based on their valve health.

Article Abstract

Intense exercise exposes the heart to significant hemodynamic demands, resulting in adaptive changes in cardiac morphology and function. Nevertheless, the athletic adaptation of the atrioventricular valves remains to be elucidated. Our study aimed to characterize the geometry of mitral (MA) and tricuspid (TA) annuli in elite athletes using 3-D echocardiography. Thirty-four athletes presented with functional mitral regurgitation (FMR) were retrospectively identified and compared with 34 athletes without mitral regurgitation (MR) and 34 healthy, sedentary volunteers. 3-D echocardiographic datasets were used to quantify MA and TA geometry and leaflet tenting by dedicated softwares. MA and TA areas, as well as tenting volumes, were higher in athletes compared with controls. MA area was significantly higher in athletes with MR compared with those without (8.2 ± 1.0 vs. 7.2 ± 1.0 cm/m, < 0.05). Interestingly, athletes with MR also presented with a significantly higher TA area (7.2 ± 1.1 vs. 6.5 ± 1.1 cm/m, < 0.05). Nonplanar angle describing the MA's saddle shape was less obtuse in athletes without MR, whereas the values of athletes with MR were comparable with controls. The exercise-induced relative increases in left ventricular (35 ± 25%) and left atrial (40 ± 29%) volumes were similar; however, the increment in the MA area was disproportionately higher (63 ± 23%, overall < 0.001). The relative increase in TA area (40 ± 23%) was also higher compared with the increment in right ventricular volume (34 ± 25%, < 0.05). Atrioventricular annuli undergo a disproportionate remodeling in response to regular exercise. Athletic adaptation is characterized by both annular enlargement and increased leaflet tenting of both valves. There are differences in MA geometry in athletes presented with versus without FMR. We have characterized the annular geometry of mitral and tricuspid valves in elite athletes using 3-D echocardiography. We have found that exercise-induced remodeling of the atrioventricular annuli comprises a disproportionate dilation of annular dimensions and increased leaflet tenting of both valves. Moreover, we have demonstrated a more pronounced saddle shape of the mitral annulus in athletes without mitral regurgitation, which was not present in those who had mild regurgitation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00877.2020DOI Listing

Publication Analysis

Top Keywords

mitral tricuspid
12
athletes
12
elite athletes
12
athletes presented
12
mitral regurgitation
12
leaflet tenting
12
tricuspid annuli
8
3-d echocardiographic
8
athletic adaptation
8
geometry mitral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!