The Heisenberg scaling, which scales as N^{-1} in terms of the number of particles or T^{-1} in terms of the evolution time, serves as a fundamental limit in quantum metrology. Better scalings, dubbed as "super-Heisenberg scaling," however, can also arise when the generator of the parameter involves many-body interactions or when it is time dependent. All these different scalings can actually be seen as manifestations of the Heisenberg uncertainty relations. While there is only one best scaling in the single-parameter quantum metrology, different scalings can coexist for the estimation of multiple parameters, which can be characterized by multiple Heisenberg uncertainty relations. We demonstrate the coexistence of two different scalings via the simultaneous estimation of the magnitude and frequency of a field where the best precisions, characterized by two Heisenberg uncertainty relations, scale as T^{-1} and T^{-2}, respectively (in terms of the standard deviation). We show that the simultaneous saturation of two Heisenberg uncertainty relations can be achieved by the optimal protocol, which prepares the optimal probe state, implements the optimal control, and performs the optimal measurement. The optimal protocol is experimentally implemented on an optical platform that demonstrates the saturation of the two Heisenberg uncertainty relations simultaneously, with up to five controls. As the first demonstration of simultaneously achieving two different Heisenberg scalings, our study deepens the understanding on the connection between the precision limit and the uncertainty relations, which has wide implications in practical applications of multiparameter quantum estimation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.070503DOI Listing

Publication Analysis

Top Keywords

uncertainty relations
24
heisenberg uncertainty
20
heisenberg scalings
8
quantum metrology
8
saturation heisenberg
8
optimal protocol
8
heisenberg
7
scalings
6
uncertainty
6
relations
6

Similar Publications

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Revisiting secondary model features for describing the shoulder and lag parameters of microbial inactivation and growth models.

Int J Food Microbiol

January 2025

Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.

The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (λ) and the shoulder length (S).

View Article and Find Full Text PDF

The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose.

View Article and Find Full Text PDF

Background: Human metapneumovirus (hMPV) is a respiratory pathogen that has gained increasing recognition due to advancements in molecular diagnostic tools, which have improved its detection and characterization. While severe disease manifestations are traditionally associated with pediatric, elderly, or immunocompromised patients, hMPV-related pneumonia in immunocompetent adults remains underexplored.

Methods: This case report describes a 68-year-old male who developed severe community-acquired pneumonia (CAP) caused by hMPV despite being immunocompetent and having no significant comorbidities.

View Article and Find Full Text PDF

: Section is the most diverse group in the genus L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!