Probing Band Topology Using Modulational Instability.

Phys Rev Lett

Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod 603950, Russia.

Published: February 2021

AI Article Synopsis

  • * Initially, we find that long wavelength instabilities and alterations in the Bloch waves are closely linked to band inversions, which are significant changes in the system's properties.
  • * Our findings reveal that, over time, nonlinear interactions lead to energy spreading and the formation of unique wave polarization patterns, providing a method to explore topological features and generate complex wave fields.

Article Abstract

We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.073901DOI Listing

Publication Analysis

Top Keywords

modulational instability
12
nonlinear bloch
8
bloch waves
8
probing band
4
band topology
4
topology modulational
4
instability
4
instability analyze
4
analyze modulational
4
instability nonlinear
4

Similar Publications

Article Synopsis
  • This paper explores the properties of modulational instability (MI) and rogue waves (RWs) using generalized fractional nonlinear Schrödinger (FNLS) equations with rational potentials, focusing on the relationship between wavenumber and instability growth rates.
  • The study confirms through numerical simulations that MI occurs in focusing conditions and reveals how certain time-dependent potentials lead to controllable RWs in both cubic and quintic FNLS equations.
  • Additionally, it investigates the generation of higher-order RWs and identifies the conditions for their emergence, providing insights into the interaction between system parameters and potentials, which could inform future nonlinear wave research.
View Article and Find Full Text PDF

Transition from weak turbulence to collapse turbulence regimes in the Majda-McLaughlin-Tabak model.

Phys Rev E

August 2024

Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

It is well known that wave collapses can emerge from the focusing one-dimensional (1D) Majda-McLaughlin-Tabak (MMT) model as a result of modulational instability. However, how these wave collapses affect the spectral properties and statistics of the wave field has not been adequately studied. We undertake this task by simulating the forced-dissipated 1D MMT model over a range of forcing amplitudes.

View Article and Find Full Text PDF

Nonlinear two-dimensional (IGWs) in the atmospheres of the Earth and the Sun are studied. The resulting two-dimensional nonlinear equation has the form of a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, that is, when the nonlinear response depends on the wave intensity at some spatial domain. The modulation instability of IGWs is predicted, and specific cases for the Earth's atmosphere are considered.

View Article and Find Full Text PDF

Microcomb generation in the normal-dispersion region usually requires specially designed microresonators with mode interactions, increasing the complexity of device design and control. Here we demonstrate a novel, to the best of our knowledge, scheme of frequency comb generation by bidirectionally pumping an ordinary normal-dispersion microresonator. The cross-phase modulation from the counter-propagating light reshapes the cavity response, facilitating the emergence of modulational instability for comb initiation.

View Article and Find Full Text PDF

We consider the one-dimensional deterministic complex Ginzburg-Landau equation in the regime of phase turbulence, where the order parameter displays a defect-free chaotic phase dynamics, which maps to the Kuramoto-Sivashinsky equation, characterized by negative viscosity and a modulational instability at linear level. In this regime, the dynamical behavior of the large wavelength modes is captured by the Kardar-Parisi-Zhang (KPZ) universality class, determining their universal scaling and their statistical properties. These modes exhibit the characteristic KPZ superdiffusive scaling with the dynamical critical exponent z=3/2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!