A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decomposing Magnetic Dark-Field Contrast in Spin Analyzed Talbot-Lau Interferometry: A Stern-Gerlach Experiment without Spatial Beam Splitting. | LitMetric

We have recently shown how a polarized beam in Talbot-Lau interferometric imaging can be used to analyze strong magnetic fields through the spin dependent differential phase effect at field gradients. While in that case an adiabatic spin coupling with the sample field is required, here we investigate a nonadiabatic coupling causing a spatial splitting of the neutron spin states with respect to the external magnetic field. This subsequently leads to no phase contrast signal but a loss of interferometer visibility referred to as dark-field contrast. We demonstrate how the implementation of spin analysis to the Talbot-Lau interferometer setup enables one to recover the differential phase induced to a single spin state. Thus, we show that the dark-field contrast is a measure of the quantum mechanical spin split analogous to the Stern-Gerlach experiment without, however, spatial beam separation. In addition, the spin analyzed dark-field contrast imaging introduced here bears the potential to probe polarization dependent small-angle scattering and thus magnetic microstructures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.070401DOI Listing

Publication Analysis

Top Keywords

dark-field contrast
16
spin
8
spin analyzed
8
stern-gerlach experiment
8
experiment spatial
8
spatial beam
8
differential phase
8
contrast
5
decomposing magnetic
4
dark-field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!