We report the observation of low-energy, low-momenta collective oscillations of an exciton-polariton condensate in a round "box" trap. The oscillations are dominated by the dipole and breathing modes, and the ratio of the frequencies of the two modes is consistent with that of a weakly interacting two-dimensional trapped Bose gas. The speed of sound extracted from the dipole oscillation frequency is smaller than the Bogoliubov sound, which can be partly explained by the influence of the incoherent reservoir. These results pave the way for understanding the effects of reservoir, dissipation, energy relaxation, and finite temperature on the superfluid properties of exciton-polariton condensates and other two-dimensional open-dissipative quantum fluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.075301 | DOI Listing |
Science
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFDev Cell
December 2024
Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK. Electronic address:
Oscillatory phenomena play widespread roles in the control of biological systems. In D. discoideum, oscillatory cyclic adenosine monophosphate (cAMP) signaling drives collective behavior and induces a temporal developmental gene expression program.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Department for Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience, Saclay, France.
The thalamus is the brain's central relay station, orchestrating sensory processing and cognitive functions. However, how thalamic function depends on internal and external states, is not well understood. A comprehensive understanding would necessitate the integration of single cell dynamics with their collective behavior at population level.
View Article and Find Full Text PDFNanophotonics
February 2024
Department of Physics, ITMO University, Saint-Petersburg, Russia.
The optically trapped ensembles of atoms provide a versatile platform for storing and coherent manipulation of quantum information. However, efficient realization of quantum information processing requires long-lived quantum states protected from the decoherence e.g.
View Article and Find Full Text PDFNeural Netw
November 2024
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:
In neuroscience, phase synchronization (PS) is a crucial mechanism that facilitates information processing and transmission between different brain regions. Specifically, global phase synchronization (GPS) characterizes the degree of PS among multivariate neural signals. In recent years, several GPS methods have been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!