Gene editing blood-derived cells is an attractive approach to cure selected monogenic diseases but remains experimental. A systematic search of preclinical controlled studies is needed to determine the persistence of edited cells following reinfusion. All studies identified in our systematic search (to 20 October 2020) examining the use of CRISPR/Cas9 gene editing in blood-derived cells for transplantation were included. Meta-analysis was performed to determine the engraftment and persistence of gene edited cells. A total of 3538 preclinical studies were identified with 15 published articles meeting eligibility for meta-analysis. These in vivo animal studies examined editing of hemoglobin to correct sickle cell disease (eight studies), inducing resistance to acquired immunodeficiency syndrome (two studies), and six other monogenic disorders (single studies). CRISPR-Cas9 edited hematopoietic stem and progenitor cells demonstrated equivalent early engraftment compared to controls in meta-analysis but persistence of gene-edited cells was reduced at later time points and in secondary transplant recipients. Subgroup analysis in studies targeting the hemoglobin gene revealed a significant reduction in the persistence of gene-edited cells whether homology-directed repair or nonhomologous end-joining were used. No adverse side effects were reported. Significant heterogeneity in study design and outcome reporting was observed and the potential for bias was identified in all studies. CRISPR-Cas9 gene edited cells engraft similarly to unedited hematopoietic cells. Persistence of gene edited cells, however, remains a challenge and improved methods of targeting hematopoietic stem cells are needed. Reducing heterogeneity and potential risk of bias will hasten the development of informative clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235122PMC
http://dx.doi.org/10.1002/sctm.20-0520DOI Listing

Publication Analysis

Top Keywords

gene edited
16
edited cells
16
cells
11
studies
10
crispr/cas9 gene
8
edited hematopoietic
8
preclinical studies
8
gene editing
8
editing blood-derived
8
blood-derived cells
8

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

The new HLA-C*12:02:55 allele showed one synonymous nucleotide difference compared to the HLA-С*12:02:02:01 allele in codon 134.

View Article and Find Full Text PDF

The new HLA-B*35:01:80 allele showed one synonymous nucleotide difference compared to the HLA-B*35:01:01:01 allele in codon 137.

View Article and Find Full Text PDF

Advances in cryo-electron microscopy (cryoEM) for structure-based drug discovery.

Expert Opin Drug Discov

January 2025

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.

Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!