Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lithium-rich manganese-based layered oxide cathodes (LLOs) with oxygen redox reactions are considered to be potential candidates for the next generation of high-energy-density Li-ion batteries. However, the oxygen redox process that enables ultrahigh specific capacity usually leads to irreversible O release and cation migration, which induce structure degradation and severe capacity/voltage losses and thus limit the commercial application of LLOs. Herein, we successfully synthesized chlorine (Cl)-doped Co-free LLOs (LiMnNiOCl) and analyzed the effect of anion doping on oxygen redox and structure stability of LLOs. Cl doping has been proven to decrease the irreversible lattice oxygen loss to enhance the redox reversibility of oxygen and inhibit the transition-metal migration during cycles, which substantially enhances the capacity and voltage retention and improves the rate capability during cycling. This work provides new insights for the development of high-performance TM oxide cathode materials with reversible oxygen redox.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c01351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!