Different response modes and cooperation modulations of blue-light receptors in photomorphogenesis.

Plant Cell Environ

Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, China.

Published: June 2021

Cryptochromes photoreceptors, CRY1 and CRY2 in Arabidopsis, mediate blue light responses in plants and metazoa. The signalling interactions underlying photomorphogenesis of cryptochromes action have been extensively studied in experiment, expecting a systematical analysis of the dynamic mechanisms of photosensory signalling network from a global view. In this study, we developed a signalling network model to quantitatively investigate the different response modes and cooperation modulations on photomorphogenesis for CRY1 and CRY2 under blue light. The model shows that the different modes of time-dependent and fluence-rate-dependent phosphorylations for CRY1 and CRY2 are originated from their different phosphorylation rates and degradation rates. Our study indicates that, due to the strong association between blue-light inhibitor of cryptochromes (BIC) and CRY2, BIC negatively modulates CRY2 phosphorylation, which was confirmed by our experiment. The experiment also validated the model prediction that the time-dependent BIC-CRY1 and the fluence-rate-dependent BIC-CRY2 are both bell-shaped under blue light. Importantly, the model proposes that the COP1-SPA abundance can strongly inhibit the phosphorylation response of CRY2, resulting in the positive regulation of CRY2 phosphorylation by CRY1 through COP1-SPA. The model also predicts that the CRY1-HY5 axis, rather than CRY2-HY5 pathway, plays a dominant role in blue-light-dependent photomorphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14038DOI Listing

Publication Analysis

Top Keywords

cry1 cry2
12
blue light
12
response modes
8
modes cooperation
8
cooperation modulations
8
photomorphogenesis cryptochromes
8
signalling network
8
cry2 phosphorylation
8
cry2
7
model
5

Similar Publications

Chronic Dexamethasone Disturbs the Circadian Rhythm of Melatonin and Clock Genes in Goats.

Animals (Basel)

January 2025

Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Article Synopsis
  • Dex, a drug used for its immunosuppressive and anti-inflammatory effects, disrupts melatonin secretion and biological clock gene expression in goats.
  • After 21 days of Dex treatment, goats showed significantly lower melatonin levels in both plasma and colon, as well as decreased expression of AANAT, a key enzyme for melatonin synthesis.
  • The circadian rhythms of several clock genes were disrupted in the Dex group, along with notable changes in CLOCK and BMAL1 protein levels, indicating that chronic Dex exposure affects biological rhythm regulation.
View Article and Find Full Text PDF

Dissecting sequence-structure-function-diversity in plant cryptochromes.

Plant Sci

December 2024

Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, WB 700073,  India. Electronic address:

Ubiquitous to every stratum of life, cryptochromes regulate numerous light dependent functions in terrestrial plants. These include light-dependent transcription, circadian rhythm, inhibition of hypocotyl elongation, programmed cell death, promotion of floral initiation, mediation of gravitropic response, responding to biotic and abiotic stress etc. There have been quite a few seminal reviews including on plant cryptochromes, focusing mostly on the detailed functional aspects.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to explore changes in circadian clock and Toll-like receptor gene expressions in blood cells of patients with Meniere's disease (MD) and vestibular migraine (VM) to see if these differences can help in distinguishing between the two conditions.
  • The research includes 69 participants, comparing blood samples from those with MD and VM during vertigo episodes to healthy controls, revealing significant differences in gene expression, particularly involving the PER and TLR genes.
  • Findings suggest that there are distinct genetic markers linked to MD and VM, which may aid in understanding their different underlying causes and provide potential biomarkers for diagnosis.
View Article and Find Full Text PDF

The (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal's immune status. The melatonin signal processing in PT cells occurs through the presence of melatonin receptors and the expression of molecular clock genes.

View Article and Find Full Text PDF

Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25-30) and old (age 70-76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!