Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10565-021-09584-2 | DOI Listing |
J Oral Biosci
December 2024
Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan R.O.C; Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan, Taiwan R.O.C. Electronic address:
Objective: Drug resistance and subsequent adverse effects, such as cancer cachexia, limit the clinical use of cisplatin. Oligonol® (Olg), a low-molecular-weight polyphenol, exhibits NF-κB inhibitory properties. NF-κB activation has been implicated in cisplatin resistance of cancer cells and skeletal muscle wasting.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China.
J Mater Chem B
December 2024
Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran.
The increasing effective, detectable, and targeted anticancer systems are driven by the growing cancer incidence and the side effects of current drugs. Natural products like saponin and apigenin have emerged as valuable compounds for precise treatment. Recent advancements in bioactive metal-organic frameworks (MOFs) have introduced multifunctional particles suitable for cellular imaging, targeted drug delivery, and early cancer treatment.
View Article and Find Full Text PDFMol Med Rep
March 2025
Department of Biomedical Sciences, National Chung Cheng University, Chia‑Yi 62102, Taiwan, R.O.C.
Homeobox A5 () has been identified as a tumor suppressor gene in breast cancers, but its role in oral squamous cell carcinoma (OSCC) has not been confirmed. The Illumina GoldenGate Assay for methylation identified that DNA methylation patterns differ between tumorous and normal tissues in the oral cavity and that is one of the genes that are hypermethylated in oral tumor tissues. The present study obtained more‑complete information on the methylation status of by using the Illumina Infinium MethylationEPIC BeadChip and bisulfite sequencing assays.
View Article and Find Full Text PDFMol Cancer
December 2024
Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
Oral squamous cell carcinoma (OSCC) is a prevalent oral malignancy, which poses significant health risks with a high mortality rate. Regulatory T cells (Tregs), characterized by their immunosuppressive capabilities, are intricately linked to OSCC progression and patient outcomes. The metabolic reprogramming of Tregs within the OSCC tumor microenvironment (TME) underpins their function, with key pathways such as the tryptophan-kynurenine-aryl hydrocarbon receptor, PI3K-Akt-mTOR and nucleotide metabolism significantly contributing to their suppressive activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!