Greywater recycling systems designed for high-quality applications, such as hand washing, must deliver microbially safe and aesthetically acceptable water under the challenging operating conditions present where such systems are needed most urgently. As chlorination is the most popular strategy for reducing bacterial concentrations in greywater, understanding chlorination in the context of disruptive and challenging operation is essential to designing robust treatment. In this study, we have examined how disruptions through overall increased loading, interrupted aeration and increased ammonia loading have impacted the chlorine demand of the water produced by a greywater recycling system. We also presented concentrations of significant chemicals that contributed to this chlorine demand. The results indicate that a 1 d period with 8 times (8x) the normal design loading produced a peak chlorine demand of 0.74 mg Cl/L, which is approximately double the baseline value. While this chlorine demand can be overcome by adding more chlorine, tests involving disruptions in aeration or feeding additional ammonia into the bioreactor produced much greater increases (>30x). The risks of increased chlorine demand on microbial safety can be overcome by limiting ammonia inputs to the system, providing backup systems to ensure sufficient aeration, or through additional anti-bacterial measures that do not depend on maintaining residual chlorine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898034PMC
http://dx.doi.org/10.1016/j.wroa.2020.100087DOI Listing

Publication Analysis

Top Keywords

chlorine demand
24
greywater recycling
12
chlorine
8
demand
6
disruptions loading
4
aeration
4
loading aeration
4
aeration impact
4
impact effluent
4
effluent chlorine
4

Similar Publications

Comprehensive Chlorine Suppression: Advances in Materials and System Technologies for Direct Seawater Electrolysis.

Nanomicro Lett

January 2025

State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.

Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency.

View Article and Find Full Text PDF

Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.

View Article and Find Full Text PDF

The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.

View Article and Find Full Text PDF

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF

A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation.

Int J Biol Macromol

January 2025

Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:

Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!