Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neuroimaging-genetics cohorts gather two types of data: brain imaging and genetic data. They allow the discovery of associations between genetic variants and brain imaging features. They are invaluable resources to study the influence of genetics and environment in the brain features variance observed in normal and pathological populations. This study presents a genome-wide haplotype analysis for 123 brain sulcus opening value (a measure of sulcal width) across the whole brain that include 16,304 subjects from UK Biobank. Using genetic maps, we defined 119,548 blocks of low recombination rate distributed along the 22 autosomal chromosomes and analyzed 1,051,316 haplotypes. To test associations between haplotypes and complex traits, we designed three statistical approaches. Two of them use a model that includes all the haplotypes for a single block, while the last approach considers each haplotype independently. All the statistics produced were assessed as rigorously as possible. Thanks to the rich imaging dataset at hand, we used resampling techniques to assess False Positive Rate for each statistical approach in a genome-wide and brain-wide context. The results on real data show that genome-wide haplotype analyses are more sensitive than single-SNP approach and account for local complex Linkage Disequilibrium (LD) structure, which makes genome-wide haplotype analysis an interesting and statistically sound alternative to the single-SNP counterpart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440755 | PMC |
http://dx.doi.org/10.1038/s41431-021-00827-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!