Sepsis is life-threatening organ dysfunction caused by a deregulated host response to infection. Endothelial dysfunction is the initial factor leading to organ dysfunction and it is associated with increased mortality. There is no effective drug to treat sepsis-induced endothelial dysfunction. In this study, we detected a favorable effect of tubeimoside I (TBM) in ameliorating sepsis-induced endothelial dysfunction. To unveil the mechanism how TBM protects against sepsis-induced endothelial dysfunction, we examined TBM's effects on oxidative stress and apoptosis both in vivo and in vitro. TBM treatment alleviated oxidative stress by decreasing NOX2 and Ac-SOD2/SOD2 and decreased apoptosis by inhibiting cleaved caspse3 and Bax/Bcl-2. Notably, sepsis induced a significant decrease of SIRT3 expression in vascular endothelium, while TBM treatment reversed SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we knockdown SIRT3 using siRNA before TBM treatment. Then, the cytoprotective effects of TBM were largely abolished by siSIRT3. This suggests that SIRT3 plays an essential role in TBM's endothelial protective effects and TBM might be a potential drug candidate to treat sepsis-induced endothelial dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41374-021-00580-y | DOI Listing |
Alzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFJ Atheroscler Thromb
January 2025
Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba.
Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), is a pervasive chronic disease that affects millions of people worldwide. It predisposes individuals to a range of severe microvascular and macrovascular complications, which drastically impact the patient's quality of life and increase mortality rates owing to various comorbidities. This extensive review explores the intricate pathophysiology underlying diabetic complications, focusing on key mechanisms, such as atherosclerosis, insulin resistance, chronic inflammation, and endothelial dysfunction.
View Article and Find Full Text PDFVascul Pharmacol
January 2025
Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy. Electronic address:
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:
SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!