Objective: To investigate the efficacy and safety of hu3S193, a humanized anti-Lewis-Y monoclonal antibody, as a consolidation strategy in patients with platinum-sensitive recurrent epithelial ovarian cancer who achieved a second complete response after salvage platinum-doublet chemotherapy.

Methods: This single-arm phase II study accrued patients with recurrent epithelial ovarian cancer with Lewis-Y expression by immunohistochemistry who had achieved a second complete response after five to eight cycles of platinum-based chemotherapy. Patients received intravenous infusions of hu3S193, 30 mg/m every 2 weeks starting no more than 8 weeks after the last dose of chemotherapy and continuing for 12 doses, until disease progression, or unacceptable toxicity. The primary endpoint was progression-free survival of the second remission. Secondary objectives were safety and pharmacokinetics.

Results: Twenty-nine patients were enrolled. Most had a papillary/serous histology tumor (94%), stage III disease at diagnosis (75%), and five (17%) underwent secondary cytoreduction before salvage chemotherapy. Two patients were not eligible for efficacy but were considered for toxicity analysis. Eighteen patients (62%) completed the full consolidation treatment while nine patients progressed on treatment. At the time of analysis, 23 patients (85%) of the eligible population had progressed and seven of these patients (26%) had died. Median progression-free survival of the second remission was 12.1 months (95% CI: 10.6-13.9), with a 1-year progression-free survival of the second remission rate of 50.1%. The trial was terminated early since it was unlikely that the primary objective would be achieved. The most commonly reported treatment-related adverse events were nausea (55%) and vomiting (51%).

Conclusions: Hu3S193 did not show sufficient clinical activity as consolidation therapy in patients with recurrent epithelial ovarian cancer who achieved a second complete response after platinum-based chemotherapy.

Trial Registration: NCT01137071.

Download full-text PDF

Source
http://dx.doi.org/10.1136/ijgc-2020-002239DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
second remission
16
recurrent epithelial
12
epithelial ovarian
12
achieved second
12
second complete
12
complete response
12
progression-free survival
12
survival second
12
patients
10

Similar Publications

Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Background: The quality of life (QOL) of ovarian cancer patients is often impaired by refractory ascites. Cell-free and concentrated ascites reinfusion therapy (CART) is a palliative treatment for refractory ascites, but adverse events, such as fever, are problematic. Several cytokines have been suggested to be responsible for the adverse events, but they have not been investigated in detail.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial.

ESMO Open

January 2025

Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:

Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!