Objective: To characterize and investigate efficacy of loading functionalized ZrO nanoparticles in 3-dimensional (3D) printed acrylate ester-based resin subjected to accelerated aging in artificial saliva. As well as to evaluate the effect of ZrO nanoparticle volume fraction addition on mechanical and physical properties of printed composite.
Methods: Functionalized ZrO nanoparticles were characterized using TEM and Raman spectroscopy. 3D printed dental resin was reinforced, with ZrO nanoparticles, in the concentration range (0-5wt.%). The resulted nanocomposites, in term of structure and physical/mechanical properties were evaluated using different mechanical testing, microscopic and spectroscopic techniques.
Results: ZrO based nanocomposite was successful and formed composites were more ductile. Degree of conversion was significant at the highest level with blank resin and 1wt.%. Sorption revealed reduction associated with volume fraction significant to neat resin, however solubility indicated neat and 4wt.% had the lowest significant dissolution. Vickers represented critical positive correlation with filler content, while nanohardness and elasticity behaved symmetrically and had the maximum strength at 3wt.% addition. In addition, 3wt.% showed the highest fracture toughness and modulus. Improvement of flexural strength was significantly linked to filler concentration. Overall properties dramatically were enhanced after 3 months aging in artificial saliva, especially degree of conversion, microhardness, nanoindentation/elasticity, and flexural modulus. However, significant reduction was observed with flexural modulus and fracture toughness.
Significance: The outcomes suggest that the newly developed 3D printed nanocomposites modified with ZrO nanoparticle have the superior potential and efficacy as long-term provisional dental restoration materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2021.02.010 | DOI Listing |
J Photochem Photobiol B
December 2024
Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641 407, India.
Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.
View Article and Find Full Text PDFSmall
December 2024
Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China.
Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.
View Article and Find Full Text PDFChemSusChem
December 2024
Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
Artificial N fixation via the electrocatalytic nitrogen (N) reduction reaction (NRR) has been recently promoted as a rational route toward reducing energy consumption and CO emission as compared with the traditional Haber-Bosch process. Nevertheless, optimizing NRR relies on developing highly efficient electrocatalysts. Herein, we report on the reliable and reproducible synthesis of two promising electrocatalysts in either the presence or absence of Ketjenblack (KB), namely, ZrO-ZrN@KB and ZrO-ZrN systems, synthesized through the nitriding of Zr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!