Currently, there is a great interest in finding alternative protein and energy sources to replace soybean-based feeds in poultry diets. The main objective of the present study was to completely replace soybean in layer diets with defatted meal and fat from black soldier fly larvae without adverse effects. For this purpose, 5 × 10 Lohmann Brown Classic hens were fed either a soybean-based diet or diets based on defatted black soldier fly larvae meal and fat from 2 producers (1 commercial, 1 small-scale) operating with different rearing substrates, temperatures, and larvae processing methods (10 hens/diet). The data obtained included nutrient composition of larvae meals and diets, amino acid digestibility (6 hens/diet), and metabolizability, performance and egg quality (all 10 hens/diet). In addition, the acceptance of the 4 larvae-based diets was tested against the soybean-based diet in a 6-day choice feeding situation (10 hens/treatment). The nutritional value of the larvae-based diets was equivalent to the soybean-based diet in hens with a laying performance of 98%. Although average feed intake was not significantly different over the 7 experimental weeks, the diets based on larvae feeds from the small-scale production appeared to be slightly less accepted in a choice situation than the soy-based diet and those with larvae from commercial origin. This was more likely the effect of the larvae fat rather than that of the larvae protein meal. In addition, the commercial larvae material was superior to that from the small-scale production concerning supply with digestible sulfur-containing amino acids (548 vs. 511 mg/day) and lysine (792 vs. 693 mg/day), egg weight (67 vs. 63 g), daily egg mass (66 vs. 61 g/day) and, in tendency, feed efficiency. The results indicate that soybean-based feeds can be replaced completely by black soldier fly meal and fat in diets of high-performing layers. However, because of nutritional differences between the larvae materials of different origin the quality of the larvae has to be closely monitored before being used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937743PMC
http://dx.doi.org/10.1016/j.psj.2021.101034DOI Listing

Publication Analysis

Top Keywords

black soldier
16
soldier fly
16
meal fat
16
larvae
12
fly larvae
12
soybean-based diet
12
diets
9
larvae meal
8
completely replace
8
replace soybean
8

Similar Publications

To achieve good agricultural practices and maximize the economic yield of corn, farmers should reduce the use of inorganic fertilizers. A field experiment was conducted in the Chonnabot district, Khon Kaen province, Thailand, during the 2022 and 2023 growing seasons. The aim was to assess the impact of different organic fertilizers and their combinations on the growth and yield of commercial sweet corn ( L.

View Article and Find Full Text PDF

Pathway of typical β-Lactam antibiotics degradation by black soldier fly and response characteristic of its intestinal microbes.

Bioresour Technol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062 China. Electronic address:

To effectively address the contamination caused by antibiotic misuse, this study was conducted to enhance the removal of amoxicillin (AMX) and penicillin sodium (PEN) by incorporating black soldier fly larvae (BSFL). The results showed that BSFL increased the degradation rates of AMX and PEN to 71.00 % and 80.

View Article and Find Full Text PDF

Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Waste Manag

January 2025

Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.

View Article and Find Full Text PDF

Clear differences exist between the Global South and the Global North with respect to economic development. The majority of small and medium-sized insect production farms are located in Africa, Asia, and Latin America, which face challenges to food production and organic waste management in general. These regions have a long history of insect use, as well as environmental advantages, making production of insects in general - and the black soldier fly in particular - a promising option for sustainable food production and organic waste management.

View Article and Find Full Text PDF

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!