The antibacterial and biocompatible films have attracted much attention due to their wide range of applications. Although a lot of work has been done in this area, research in this field is still very active and associated with the continuous development of new materials. In the present study full polysaccharide chitosan-agarose (CS-AG) films were produced by reaction of chitosan with periodate activated agarose, followed by reductive amination. Activated agarose was prepared by periodate oxidation of agarose, and then applied as a crosslinking agent to form a new polymeric network. The structure of periodate activated agarose was studied by nuclear magnetic resonances spectroscopy (H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Rheological experiments showed that the viscosity of agarose solution changes rapidly by addition of periodate to the solution. Swelling, deswelling, and gel content of the films were determined at different pH. Chitosan-agarose silver nanocomposite (CS-AG/n-Ag) films were prepared by loading silver ions and subsequent reduction. The CS-AG/n-Ag films were characterized by FT-IR, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM).Transmission electron microscopy (TEM) image showed that the size of silver nanoparticles was about 2-7 nm. The bactericidal capacities (MBC/MIC) of the CS-AG/Ag films for Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) were obtained 2.0, 1.0 and 2.0, respectively. The results demonstrate that the CS-AG/n-Ag films have good antibacterial activity against both the gram-negative and the gram-positive bacteria which make them suitable for food packaging and wound healing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.02.192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!