Keloids are a type of disordered scar formation which not only show heterogeneity between individuals and within the scar itself, but also share common features of hyperproliferation, abnormal extra-cellular matrix deposition and degradation, as well as altered expression of the molecular markers of wound healing. Numerous reports have established that cells from keloid scars display Warburg metabolism-a form of JAK2/STAT3-induced metabolic adaptation typical of rapidly dividing cells in which glycolysis becomes the predominant source of ATP over oxidative phosphorylation (OxPhos). Using the JAK1/2 inhibitor ruxolitinib, along with cells from patients with STAT3 loss of function (STA3 LOF; autosomal dominant hyper IgE syndrome) we examined the role of JAK/STAT signaling in the hyperproliferation and metabolic dysregulation seen in keloid fibroblasts. Although ruxolitinib inhibited hyperactivity in the scratch assay in keloid fibroblasts, it paradoxically exacerbated the hyper-glycolytic state, possibly by further limiting OxPhos via alterations in mitochondrial phosphorylated STAT3 (pSTAT3Ser727). In healthy volunteer fibroblasts, folic acid exposure recapitulated the exaggerated closure and hyper-glycolytic state of keloid fibroblasts through JAK1/2- and STAT3-dependent pathways. Although additional studies are needed before extrapolating from a representative cell line to keloids writ large, our results provide novel insights into the metabolic consequences of STAT3 dysfunction, suggest a possible role for folate metabolism in the pathogenesis of keloid scars, and offer in vitro pre-clinical data supporting considerations of clinical trials for ruxolitinib in keloid disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932104 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248011 | PLOS |
Commun Biol
December 2024
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Keloid is a dermatofibrotic disease known for its aggressive nature and characterized by pathological scarring, which often leads to disfigurement and frequent recurrences. Effective therapies for keloids are still limited, presumably due to the inadequate comprehension of their aggressive mechanisms. In our study, we examined the unique scenario where both keloid and non-aggressive pathological scar originate from the same patient, providing a rare opportunity to explore the aggressive mechanisms of keloids through single-cell RNA sequencing.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany.
Wound healing as a result of a skin injury involves a series of dynamic physiological processes, leading to wound closure, re-epithelialization, and the remodeling of the extracellular matrix (ECM). The primary scar formed by the new ECM never fully regains the original tissue's strength or flexibility. Moreover, in some cases, due to dysregulated fibroblast activity, proliferation, and differentiation, the normal scarring can be replaced by pathological fibrotic tissue, leading to hypertrophic scars or keloids.
View Article and Find Full Text PDFFront Immunol
December 2024
Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia.
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages.
View Article and Find Full Text PDFFront Microbiol
November 2024
Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
Keloid scarring is a fibroproliferative disease of the skin, which can significantly impact one's quality of life through cosmetic concerns, physical discomfort (itchy; painful), restricted movement, and psychological distress. Owing to the poorly understood pathogenesis of keloids and their high recurrence rate, the efficacy of keloid treatment remains unsatisfactory, particularly in patients susceptible to multiple keloids. We conducted fecal metagenomic analyzes and both untargeted and targeted plasma metabolomics in patients with multiple keloids (MK, = 56) and controls with normal scars (NS, = 60); tissue-untargeted metabolomics (MK, = 35; NS, = 32), tissue-targeted metabolomics (MK, = 41; NS, = 36), and single-cell sequencing analyzes (GSE163973).
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Department of Medical Cosmetology, Yanbian University Hospital, Yanji, Jilin, China.
Keloid is the result of abnormal wound healing, puzzled by the invasive growth and high recurrence rate attributed to its complex pathogenic mechanism. Syndecan1 (SDC1) contributes to regulating cell migration and invasion by activating epithelial-mesenchymal transition (EMT) in tumor and fibrotic disease. Herein, using western blot analysis, the authors assessed the role of SDC1 on EMT in keloid and its underlying mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!