Myeloproliferative neoplasms (MPNs) cause the over-production of blood cells such as erythrocytes (polycythemia vera) or platelets (essential thrombocytosis). JAK2 V617F is the most prevalent somatic mutation in many MPNs, but previous modeling of this mutation in mice relied on transgenic overexpression and resulted in diverse phenotypes that were in some cases attributed to expression level. CRISPR-Cas9 engineering offers new possibilities to model and potentially cure genetically encoded disorders via precise modification of the endogenous locus in primary cells. Here we develop "scarless" Cas9-based reagents to create and reverse the JAK2 V617F mutation in an immortalized human erythroid progenitor cell line (HUDEP-2), CD34+ adult human hematopoietic stem and progenitor cells (HSPCs), and immunophenotypic long-term hematopoietic stem cells (LT-HSCs). We find no overt in vitro increase in proliferation associated with an endogenous JAK2 V617F allele, but co-culture with wild type cells unmasks a competitive growth advantage provided by the mutation. Acquisition of the V617F allele also promotes terminal differentiation of erythroid progenitors, even in the absence of hematopoietic cytokine signaling. Taken together, these data are consistent with the gradually progressive manifestation of MPNs and reveals that endogenously acquired JAK2 V617F mutations may yield more subtle phenotypes as compared to transgenic overexpression models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932127 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247858 | PLOS |
Cureus
December 2024
Internal Medicine, National Hospital of Sri Lanka, Colombo, LKA.
Hereditary hemochromatosis occurs due to genetic mutations, namely, cysteine-to-tyrosine substitution at amino acid 282 (C282Y) and histidine-to-aspartic acid substitution at 63 (H63D) mutations. The role of H63D mutation in hemochromatosis is less clear, and its penetrance is low even in homozygotes. Therefore, iron overload in H63D heterozygotes is extremely rare and scarcely reported.
View Article and Find Full Text PDFArch Med Res
January 2025
Cancer Molecular Diagnostics, St. James's Hospital, Dublin, Ireland. Electronic address:
Zhonghua Yi Xue Za Zhi
January 2025
Department of Hematology, the Second Hospital of Tianjin Medical University, Tianjin300211, China.
To investigate the effect of ten-eleven translocation methylcytosine dioxygenase 2 (TET2) gene mutations on the secondary myelofibrosis (SMF) of JAK2 myeloproliferative neoplasms (MPN) patients. A retrospective collection was conducted on MPN patients with JAK2 mutation detected by second-generation sequencing in the Department of Hematology, the Second Hospital of Tianjin Medical University. TET2JAK2 MPN patients were selected as the mutant group, and TET2JAK2 MPN patients matched for age and gender were selected as the non-mutant group.
View Article and Find Full Text PDFiScience
January 2025
INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France.
Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.
View Article and Find Full Text PDFBMC Cancer
January 2025
Centre for Medical Education, Queen's University Belfast, Belfast City Hospital, Lisburn Road, Belfast, UK.
Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!