A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of engineered RuBisCO Kluyveromyces marxianus for a dual microbial bioethanol production system. | LitMetric

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes play important roles in CO2 fixation and redox balancing in photosynthetic bacteria. In the present study, the kefir yeast Kluyveromyces marxianus 4G5 was used as host for the transformation of form I and form II RubisCO genes derived from the nonsulfur purple bacterium Rhodopseudomonas palustris using the Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO) method. Hungateiclostridium thermocellum ATCC 27405, a well-known bacterium for its efficient solubilization of recalcitrant lignocellulosic biomass, was used to degrade Napier grass and rice straw to generate soluble fermentable sugars. The resultant Napier grass and rice straw broths were used as growth media for the engineered K. marxianus. In the dual microbial system, H. thermocellum degraded the biomass feedstock to produce both C5 and C6 sugars. As the bacterium only used hexose sugars, the remaining pentose sugars could be metabolized by K. marxianus to produce ethanol. The transformant RubisCO K. marxianus strains grew well in hydrolyzed Napier grass and rice straw broths and produced bioethanol more efficiently than the wild type. Therefore, these engineered K. marxianus strains could be used with H. thermocellum in a bacterium-yeast coculture system for ethanol production directly from biomass feedstocks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932148PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247135PLOS

Publication Analysis

Top Keywords

napier grass
12
grass rice
12
rice straw
12
kluyveromyces marxianus
8
marxianus dual
8
dual microbial
8
rubisco genes
8
straw broths
8
engineered marxianus
8
marxianus strains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!