Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been widely recognized that the efficient training of neural networks (NNs) is crucial to classification performance. While a series of gradient-based approaches have been extensively developed, they are criticized for the ease of trapping into local optima and sensitivity to hyperparameters. Due to the high robustness and wide applicability, evolutionary algorithms (EAs) have been regarded as a promising alternative for training NNs in recent years. However, EAs suffer from the curse of dimensionality and are inefficient in training deep NNs (DNNs). By inheriting the advantages of both the gradient-based approaches and EAs, this article proposes a gradient-guided evolutionary approach to train DNNs. The proposed approach suggests a novel genetic operator to optimize the weights in the search space, where the search direction is determined by the gradient of weights. Moreover, the network sparsity is considered in the proposed approach, which highly reduces the network complexity and alleviates overfitting. Experimental results on single-layer NNs, deep-layer NNs, recurrent NNs, and convolutional NNs (CNNs) demonstrate the effectiveness of the proposed approach. In short, this work not only introduces a novel approach for training DNNs but also enhances the performance of EAs in solving large-scale optimization problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3061630 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!