N-Heterocyclic carbene-catalyzed tandem Stetter-aldol reaction of phthalaldehyde and α,β-unsaturated ketimines has been developed to afford functionalized naphthalen-1(2)-one derivatives as the formal [4+2] annulation product. Interestingly, the reaction of aldimines led to the formation of isoquinoline derivatives instead of the expected indanone derivatives as a [4+1] annulation product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.1c00337DOI Listing

Publication Analysis

Top Keywords

annulation product
8
nhc-mediated stetter-aldol
4
stetter-aldol imino-stetter-aldol
4
imino-stetter-aldol domino
4
domino cyclization
4
cyclization naphthalen-12-ones
4
naphthalen-12-ones isoquinolines
4
isoquinolines n-heterocyclic
4
n-heterocyclic carbene-catalyzed
4
carbene-catalyzed tandem
4

Similar Publications

We have devised a copper-catalysed tandem annulation reaction to generate a new class of bicyclic nucleoside analogues (BCNAs), namely, amino-substituted thiazolopyrimidine ribonucleosides. The reaction between triacetyl-5-iodo-cytidine and an appropriate organic isothiocyanate in the presence of a Cu salt and ligand resulted in the formation of an amino-substituted thiazolopyrimidine moiety. This reaction was found to be compatible with a range of aliphatic and aromatic isothiocyanates, affording the corresponding products in moderate to good yields.

View Article and Find Full Text PDF

1-Isochromene scaffolds are ubiquitous in natural products and significant bioactive molecules. Although several methods for these molecular syntheses have been developed, reports on the efficient construction of iminated isochromenes are still rather limited. Herein, we report a new Cu(II)-catalyzed annulation and sulfonylimination cascade of α-carbonyl-γ-alkynyl sulfoxonium ylides with sulfamides, enabling direct C-C σ-bond elimination to furnish iminated ()-1-isochromenes in 51-97% yields.

View Article and Find Full Text PDF

Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.

View Article and Find Full Text PDF

We present a novel, metal- and additive-free method for the robust synthesis of dihydrofuran-fused naphthalenes and coumarins. This approach utilizes the annulative coupling of sulfoxonium ylides with aldehydes, naphthols, or coumarins at ambient temperature. The method exhibits broad substrate compatibility, accommodating various functional groups on sulfoxonium ylides and naphthol or coumarin derivatives and resulting in good to high yields of the desired products.

View Article and Find Full Text PDF

Sc-Catalyzed Asymmetric [2 + 2] Annulation of 2-Alkynylnaphthols with Dienes to Access Cyclobutene Frameworks.

Org Lett

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.

Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!