RNA can alter the expression of endogenous genes and can be used to express therapeutic proteins. As a result, RNA-based therapies have recently mitigated disease in patients. Yet most potential RNA therapies cannot currently be developed, in large part because delivering therapeutic quantities of RNA drugs to diseased cells remains difficult. Here, recent studies focused on the biological hurdles that make in vivo drug delivery challenging are described. Then RNA drugs that have overcome these challenges in humans, focusing on siRNA to treat liver disease and mRNA to vaccinate against COVID, are discussed. Finally, research centered on improving drug delivery to new tissues is highlighted, including the development of high-throughput in vivo nanoparticle DNA barcoding assays capable of testing over 100 distinct nanoparticles in a single animal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995096 | PMC |
http://dx.doi.org/10.1002/adhm.202002022 | DOI Listing |
Sci Rep
January 2025
Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington. Electronic address:
To further the development of an in vitro model that faithfully recapitulates drug disposition of orally administered drugs, we investigated the utility of human enteroid monolayers to simultaneously assess intestinal drug absorption and first-pass metabolism processes. We cultured human enteroid monolayers from 3 donors, derived via biopsies containing duodenal stem cells that were propagated and then differentiated atop permeable Transwell inserts, and confirmed transformation into a largely enterocyte population via RNA sequencing analysis and immunocytochemistry (ICC) assays. Proper cell morphology was assessed and confirmed via bright field microscopy and ICC imaging of tight junction proteins and other apically and basolaterally localized proteins.
View Article and Find Full Text PDFComput Biol Med
January 2025
Oncobox Ltd., Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium. Electronic address:
Interrogating gene expression in tumor can identify up- and downregulated molecular targets of cancer drugs. Here we report the results of prospective clinical investigation of using RNA sequencing analysis for personalized cancer therapy. Transcriptomic profiles were analyzed using Oncobox platform that identifies altered expression of drug target genes and molecular pathways and builds a personalized rating of targeted therapeutics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!