The small intestine plays roles in the absorption and metabolism of orally administered drugs and chemicals. Tight junctions between intestinal epithelial cells, which form a tight barrier preventing the invasion of pathogens and toxins, are essential components of the intestinal defense system. These intestinal functions have generally been evaluated using established cell lines or primary cells in two-dimensional culture. However, these culture systems have not shown the complexity of the three-dimensional structure and diversity of cell types comprising the intestinal epithelial tissue. Here, we report the generation of intestinal organoids using human induced pluripotent stem cells subjected to sequential treatment with different cytokines and compounds. We further describe the tool for evaluating intestinal barrier functions using organoids as a physiologically relevant human platform.

Download full-text PDF

Source
http://dx.doi.org/10.1007/7651_2021_346DOI Listing

Publication Analysis

Top Keywords

barrier functions
8
intestinal epithelial
8
intestinal
7
evaluation barrier
4
functions human
4
human ipsc-derived
4
ipsc-derived intestinal
4
intestinal epithelium
4
epithelium small
4
small intestine
4

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

A pectic polysaccharide from Murray alleviates dextran sulfate sodium-induced colitis in mice.

Curr Res Food Sci

December 2024

Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xin min Street, Changchun, 130021, China.

Inflammatory bowel disorders (IBD) can lead to severe complications like perforation, bleeding, and colon cancer, posing life-threatening risks. Murray ( Murr.), rich in polysaccharides, has been utilized in traditional diets for thousands of years.

View Article and Find Full Text PDF

Counteracting Alzheimer's disease normalizing neurovascular unit with a self-regulated multi-functional nano-modulator.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.

The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!