Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Previous studies have showed the beneficial effects of mesenchymal stem cells (MSCs) on experimental intracerebral hemorrhage (ICH) animal. Enhancement of the treatment efficacy of MSCs in ICH is essential, considering the diseases association with high rates of disability and mortality. Some auxiliary methods to enhance the beneficial efficacy of MSCs have been introduced. However, the effect of electroacupuncture (EA) on the therapeutic efficacy of MSCs transplantation in hemorrhagic stroke and its potential mechanism is not explored.
Methods: ICH rat models were established using collagenase and heparin. 48 h after ICH induction, the rats were randomly divided into model control (MC), MSCs transplantation (MSCs), EA stimulation (EA) and MSCs transplantation combined with EA stimulation (MSCs + EA) groups. We used mNSS test and gait analysis to assess neurological function of rats, and PET/CT to evaluate the volume of hemorrhage focus and level of glucose uptake. The concentrations of MDA, SOD, NSE, S100B and MBP in serum or plasma were examined with ELISA. Neural differentiation of MSCs, and the expressions of Bcl-2, Bax, Arg-1 and iNOS proteins around hematoma were detected by immunofluorescence and immunohistochemistry staining respectively. Western blot was carried out to analyze the expression levels of COX4, OGDH, PDH-E1α, Bcl-2 and Bax proteins. TUNEL staining was used to estimate cell apoptosis and transmission electron microscopy (TEM) was used to observe the ultrastructure and number of mitochondria.
Results: Our data showed that EA promoted neuron-like differentiation of transplanted MSCs and the expressions of BDNF and NGF proteins in ICH rats. The score of mNSS and the gait analysis showed that the recovery of the neurological function in the MSCs + EA group was better than that in the MSCs and EA groups. EA improved the structure of brain tissue, and alleviated brain injury further after MSCs transplantation in ICH rats. When compared with the MSCs and EA groups, the level of glucose uptake and numbers of mitochondria and Arg-1 positive cells in MSCs + EA group increased significantly, but the numbers of apoptotic cells and iNOS positive cells and volume of hemorrhage focus reduced. The expressional levels of COX4, OGDH, PDH-E1α and Bcl-2 proteins increased, while the expressional level of Bax protein decreased compared with those in the MSCs and EA groups.
Conclusions: Our results reveal that EA improve therapeutic efficacy of MSCs transplantation in ICH rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12015-021-10144-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!