Objectives: The research is to propose a sensing system to ensure the electrode array being correctly placed inside the cochlea. Instead of applying extra sensors to the array, the capacitive information from multiple points of the array is gathered and analyzed to determine the state and behavior of the electrode array.
Methods: The sensing system measures electrode bipolar capacitances between multiple pairs of electrodes during the insertion. The principal component analysis (PCA) method is then applied to analysis the recorded data to discriminate insertion patterns.
Results: In total, 384 capacitance profiles from electrode pair (1, 2), and electrode pair (15, 16) were analyzed and compared. In an account of both the electrode pairs, the threshold distance was examined to be d = 1.99 at the average comparison type. The experiment results showed the success rate is over 80% to identify buckling during the insertion on a 2D cochlear model.
Conclusion: This early-stage investigation shows great potential compared with the current practice, which does not provide any feedback to surgeons. The system demonstrates the feasibility of a sensing method for auto-reoccupation electrodes behavior, and it will help surgeons to avoid misplacement of the electrode array inside the cochlea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAO.0000000000003054 | DOI Listing |
Unlabelled: Delay period activity in the dorso-lateral prefrontal cortex (dlPFC) has been linked to the maintenance and control of sensory information in working memory. The stability of working memory related signals found in such delay period activity is believed to support robust memory-guided behavior during sensory perturbations, such as distractors. Here, we directly probed dlPFC's delay period activity with a diverse set of activity perturbations, and measured their consequences on neural activity and behavior.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States.
Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Proactive treatment options remain limited, which is exacerbated by a lack of sensitive and convenient diagnostics, especially early in disease progression or specifically to assess small fiber neuropathy (SFN), the loss of distal small diameter axons that innervate tissues and organs.
Methods: We designed, fabricated, tested, and validated a first-of-its-kind medical diagnostic device for the functional assessment of transdermal small fiber nerve activity.
Introduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:
Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA. Electronic address:
Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!