Microtubules can be induced to perform synchronous and periodic cycles of assembly and disassembly at constant temperature. The process depends on GTP hydrolysis. Time-resolved X-ray scattering using synchrotron radiation shows a cyclic interconversion of tubulin subunits, microtubules and oligomers (= short protofilament fragments). Oscillations are correlated with conditions that stabilize polymers and destabilize oligomers, and others of opposite effect. Microtubule stabilizers include GTP, Mg2+ or microtubule-associated proteins (MAPs), destabilizers include GDP or elevated ionic strength. K+ at intracellular concentrations noticeably increases the stability of tubulin-MAP oligomers, in contrast to Na+. ATP and the non-hydrolyzable analogue AMP-PNP enhance oscillations by mechanisms that are not directly linked to the role of nucleotide hydrolysis in assembly. We propose a mechanism of oscillations that include oligomers as microtubule disassembly products which transiently lock the protein in an unpolymerizable state; this may point to a role of oligomers in controlling microtubule assembly cycles in cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC454327 | PMC |
http://dx.doi.org/10.1002/j.1460-2075.1988.tb02821.x | DOI Listing |
Langmuir
January 2025
Faculty of Science, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan.
The aggregation and accumulation of amyloid β 42 (Aβ42) peptides on the surface of brain cells is associated with Alzheimer's disease (AD); however, the underlying molecular mechanisms remain unclear. Herein, we used a unique brain-mimetic open system that continuously flows Aβ42 solution to analyze the initial aggregation and adsorptive nature of Aβ42 at physiological concentrations on the lipid membrane. The open system accelerated the adsorption and dimerization kinetics.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India.
The emerging prevalence of antimicrobial resistance demands cutting-edge therapeutic agents to treat bacterial infections. We present a synthetic strategy to construct sequence-defined oligomers (SDOs) by using dithiocarbamate (DTC). The antibacterial activity of the synthesized library of SDOs was studied using a Gram-positive and a Gram-negative .
View Article and Find Full Text PDFJ Struct Biol
January 2025
Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. Electronic address:
Arrestins halt cell signaling by binding to phosphorylated activated G protein-coupled receptors. Arrestin-1 binds to rhodopsin, arrestin-4 binds to cone opsins, and arrestins-2,3 bind to the rest of GPCRs. In addition, it has been reported that arrestin-1 is functionally expressed in mouse cone photoreceptors.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Solvent environment may significantly affect the equilibria involving flexible solute species, such as proteins and polymers. In the present work, a computation scheme is formulated for the change in the excess chemical potential of a flexible solute molecule upon variation of the solvent condition. The formulation adopts the scheme of error minimization in parallel to the method of Bennett acceptance ratio, and an exact expression is presented that provides the change in the excess chemical potential from solvation free energies computed in two solvent conditions of interest.
View Article and Find Full Text PDFNano Lett
January 2025
Chemical Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
The existence of the phenomenon of enhanced enzyme diffusion (EED) has been a topic of debate in recent literature. One proposed mechanism to explain the origin of EED is oligomeric enzyme dissociation. We used mass photometry (MP), a label-free single-molecule technique, to investigate the dependence of the oligomeric states of several enzymes on their ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!