Ion migration in perovskite layers can significantly reduce the long-term stability of the devices. While perovskite composition engineering has proven an interesting tool to mitigate ion migration, many optoelectronic devices require a specific bandgap and thus require a specific perovskite composition. Here, we look at the effect of grain size to mitigate ion migration. We find that in MAPbBr solar cells prepared with grain sizes varying from 2 to 11 μm the activation energy for bromide ion migration increases from 0.17 to 0.28 eV. Moreover, we observe the appearance of a second bromide ion migration pathway for the devices with largest grain size, which we attribute to ion migration mediated by the bulk of the perovskite, as opposed to ion migration mediated by the grain boundaries. Together, these results suggest the beneficial nature of grain engineering for reduction of ion migration in perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041307 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.1c00205 | DOI Listing |
Materials (Basel)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
Mn-containing sodium superionic conductor (NASICON) compounds have shown considerable potential as cathode for sodium-ion batteries (SIBs) owing to higher working voltage (V/V: 3.9 V), lower cost, and lower toxicity compared to full vanadium-based NASICON NaV(PO). Taking NaVMn(PO) (NVMP) as an example, its practical application is still restricted by poor electronic conductivity, sluggish intrinsic Na diffusion, and poor high-voltage stability.
View Article and Find Full Text PDFScience
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.
One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!