A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Antioxidant Nanoparticle Enhances Exercise Performance in Rat High-intensity Running Models. | LitMetric

An Antioxidant Nanoparticle Enhances Exercise Performance in Rat High-intensity Running Models.

Adv Healthc Mater

Department of Materials Science, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.

Published: May 2021

Although the adverse effects of excessively generated reactive oxygen species (ROS) on the body during aerobic exercise have been debated, there are few reports on the remarkable effects of the application of conventional antioxidants on exercise performance. The conventional antioxidants could not enhance exercise performance due to their rapid excretion from the body and serious adverse effects on the cellular respiratory system. In this study, impact of the original antioxidant self-assembling nanoparticle, redox-active nanoparticle (RNP), is investigated on the exercise performance of rats during running experiments. With an increase in the dose of the administered RNP, the all-out time of the rat running extends in a dose-dependent manner. In contrast, with an increase in the dose of the low-molecular-weight (LMW) antioxidant, the all-out running time of the rats decreases. The control group and LMW antioxidant treated group decrease in the number of red blood cells (RBCs) and increase oxidative stress after running. However, the RNP group maintains a similar RBC level and oxidative stress as that of the sedentary group. The results suggest that RNP, which shows long-blood circulation without disturbance of mitohormesis, effectively removes ROS from the bloodstream to suppresses RBC oxidative stress and damage, thus improving exercise performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202100067DOI Listing

Publication Analysis

Top Keywords

exercise performance
20
oxidative stress
12
adverse effects
8
conventional antioxidants
8
increase dose
8
lmw antioxidant
8
exercise
6
performance
5
running
5
antioxidant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!