Sequence-based analysis and prediction are fundamental bioinformatic tasks that facilitate understanding of the sequence(-structure)-function paradigm for DNAs, RNAs and proteins. Rapid accumulation of sequences requires equally pervasive development of new predictive models, which depends on the availability of effective tools that support these efforts. We introduce iLearnPlus, the first machine-learning platform with graphical- and web-based interfaces for the construction of machine-learning pipelines for analysis and predictions using nucleic acid and protein sequences. iLearnPlus provides a comprehensive set of algorithms and automates sequence-based feature extraction and analysis, construction and deployment of models, assessment of predictive performance, statistical analysis, and data visualization; all without programming. iLearnPlus includes a wide range of feature sets which encode information from the input sequences and over twenty machine-learning algorithms that cover several deep-learning approaches, outnumbering the current solutions by a wide margin. Our solution caters to experienced bioinformaticians, given the broad range of options, and biologists with no programming background, given the point-and-click interface and easy-to-follow design process. We showcase iLearnPlus with two case studies concerning prediction of long noncoding RNAs (lncRNAs) from RNA transcripts and prediction of crotonylation sites in protein chains. iLearnPlus is an open-source platform available at https://github.com/Superzchen/iLearnPlus/ with the webserver at http://ilearnplus.erc.monash.edu/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191785PMC
http://dx.doi.org/10.1093/nar/gkab122DOI Listing

Publication Analysis

Top Keywords

ilearnplus comprehensive
8
machine-learning platform
8
nucleic acid
8
acid protein
8
analysis prediction
8
ilearnplus
6
analysis
5
comprehensive automated
4
machine-learning
4
automated machine-learning
4

Similar Publications

Pseudouridine (Ψ) is one of the most abundant RNA modifications found in a variety of RNA types, and it plays a significant role in many biological processes. The key to studying the various biochemical functions and mechanisms of Ψ is to identify the Ψ sites. However, identifying Ψ sites using experimental methods is time-consuming and expensive.

View Article and Find Full Text PDF

iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization.

Nucleic Acids Res

June 2021

Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.

Sequence-based analysis and prediction are fundamental bioinformatic tasks that facilitate understanding of the sequence(-structure)-function paradigm for DNAs, RNAs and proteins. Rapid accumulation of sequences requires equally pervasive development of new predictive models, which depends on the availability of effective tools that support these efforts. We introduce iLearnPlus, the first machine-learning platform with graphical- and web-based interfaces for the construction of machine-learning pipelines for analysis and predictions using nucleic acid and protein sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!