The non-receptor protein tyrosine kinase 2β (Pyk2) phosphorylated tricellular tight junction (tTJ) molecules angulin-1/LSR and tricellulin (TRIC) and the inhibitor PF-431396 (PF43) suppress angulin-1/LSR and TRIC recruitment to tTJs. The disruption of the intestinal epithelial barrier by high mobility group box 1 (HMGB1) and the inflammatory cytokines TNFα and IFNγ contributes to downregulation of angulin-1/LSR and TRIC in 2.5D culture of Caco-2 cells as a novel model of inflammatory bowel disease (IBD). In the present study, to investigate the roles of Pyk2 phosphorylated angulin-1/LSR and TRIC in the intestinal epithelial barrier, 2D and 2.5D cultures of Caco-2 cells were treated with the Pyk2 inhibitor PF-43 with or without HMGB1, inflammatory cytokines TNFα and IFNγ. Treatment with PF-43 increased expression of angulin-1/LSR, phosphorylated AMPK and phosphorylated MAPK and decreased that of phosphorylated JNK, with upregulation of the epithelial barrier and cellular metabolism measured as basal oxygen consumption rate (OCR) and ATP production in 2D culture. Treatment with PF-43 prevented the downregulation of the epithelial barrier by HMGB1 and inflammatory cytokines in 2D culture. Treatment with PF-43 prevented the epithelial hyperpermeability induced by HMGB1 and inflammatory cytokines in 2.5D culture. In 2.5D culture, treatment with PF-43 inhibited the decreases of angulin-1/LSR, TRIC, pJNK, pAMPK and pMAPK induced by HMGB1 and the inflammatory cytokines. Treatment with PF-43 inhibited in part the induced phosphorylation of the serine of angulin-1/LSR and TRIC. Pyk2 inhibitor PF-43 may have potential for use in therapy for IBD via its actions with regard to phosphorylated tTJs and cellular metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078543PMC
http://dx.doi.org/10.1080/21688370.2021.1890526DOI Listing

Publication Analysis

Top Keywords

hmgb1 inflammatory
24
inflammatory cytokines
24
angulin-1/lsr tric
20
treatment pf-43
20
epithelial barrier
16
pyk2 inhibitor
12
induced hmgb1
12
caco-2 cells
12
25d culture
12
culture treatment
12

Similar Publications

Background: High-mobility group box 1 () participates in the progression of osteosarcoma (OS) through the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Corylin, one of the active components of , has anti-oxidant, anti-inflammatory, and anti-tumor effects. This study investigates the association between corylin and , and their impact and mechanism of action on OS.

View Article and Find Full Text PDF

Background: Bacterial meningitis (BM) is a life-threatening central nervous system infection with potential for severe neurological sequelae. High mobility group box 1 (HMGB1) is known as a late inflammatory mediator associated with lethal pathology. This study aims to investigate the serial cerebrospinal fluid (CSF) concentrations of HMGB1 in children with BM and its relationship to neurological prognosis.

View Article and Find Full Text PDF

inhibits -induced inflammatory response through targeting HMGB1 in mouse primary peritoneal macrophages.

Heliyon

January 2025

Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

Background: () is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in infection.

View Article and Find Full Text PDF

High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein involved in key nuclear processes such as DNA repair, replication, and gene regulation. Beyond its established nuclear roles, HMGB1 has crucial functions in the cytoplasm and extracellular environment. When translocated to the cytoplasm, HMGB1 plays a role in autophagy, cell survival, and immune response modulation.

View Article and Find Full Text PDF

Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!