Composition-dependent multivalency of peptide-peptide interactions revealed by tryptophan-scanning mutagenesis.

J Pept Sci

CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology, Beijing, China.

Published: June 2021

AI Article Synopsis

Article Abstract

We have examined in this contribution the composition dependence of binding characteristics in peptide-peptide interactions between an oligopeptide octa-glycine and a series of tryptophan-containing octapeptides. The binding energy associated with tryptophan-glycine interactions manifests pronounced stepwise binding characteristics as the number of tryptophan increases from 0 to 8 in the octapeptides consisting only of glycine and can be attributed to mono-, di-, and tri-valent peptide-peptide interactions. At the same time, only weak fluctuations in binding energy were observed as the number of tryptophan increases from 2 to 7. Such distinctive nonlinearity of composition-dependent tryptophan-glycine binding energy characteristics due to continuously varying tryptophan compositions in the octapeptides could be considered as a reflection of combinatorial contributions due to the hydrogen bonds originated from the indole moieties of tryptophan with the main chains of octapeptide of glycine containing N-H and C=O moieties and the van der Waals interactions (including π-π and π-CH interactions) between peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.3310DOI Listing

Publication Analysis

Top Keywords

peptide-peptide interactions
12
binding energy
12
binding characteristics
8
number tryptophan
8
tryptophan increases
8
interactions
6
binding
5
composition-dependent multivalency
4
multivalency peptide-peptide
4
interactions revealed
4

Similar Publications

Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes.

J Phys Chem B

January 2025

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.

PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).

View Article and Find Full Text PDF

Position-Regulated Electrostatic Interactions for Single Amino Acid Revealed by Aspartic Acid-Scanning Mutagenesis.

Chembiochem

January 2025

Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China.

We have examined in this contribution the electrostatic interactions between single arginine and aspartic acid by analyzing the peptide-peptide binding characteristics involving arginine-aspartic acid, arginine-glycine, arginine-tryptophan and tryptophan-glycine interactions. The results of aspartic acid mutagenesis revealed that the interactions between arginine and aspartic acid have significant dependence on the position and composition of amino acids. While the primary interaction can be attributed to arginine-tryptophan contacts originated from the indole moieties with the main chains of 14-mers containing N-H and C=O moieties, pronounced enhancement could be identified in association with the electrostatic side-chain-side-chain interactions between arginine and aspartic acid.

View Article and Find Full Text PDF

A water playground for peptide re-assembly from fibrils to plates.

J Mater Chem B

December 2024

Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via. Giorgieri 1, 34127 Trieste, Italy.

Article Synopsis
  • Short peptides involved in amyloid assembly and disassembly are important for addressing diseases without treatments and creating new bio-based materials.
  • Hydrogels made from these peptides can switch between gel and liquid states when heated and cooled, but most research has overlooked the crucial role of water in these processes.
  • This study focuses on a specific tetrapeptide that forms stable fibrils, which change into lasting plates when heated, highlighting water's significant influence on the structural changes during this transition.
View Article and Find Full Text PDF

Molecular recognition characteristics of co-assembled peptides on atomically flat graphite surfaces.

J Colloid Interface Sci

February 2025

Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan. Electronic address:

Molecular recognition, involving the binding of two or more molecules, is widely found in multiple disciplines. It plays a crucial role in driving specific molecular functionalization or biological activities such as antigen-antibody interactions. Recently, the molecular recognition of single peptides self-assembly at interfaces has been widely investigated since their broad applications in biosensors and bioelectronics.

View Article and Find Full Text PDF

Membrane-peptide interactions are key to the formation of helical intermediates in the early stages of amyloidogenesis. Aqueous solutions of 2,2,2-trifluoroethanol (TFE) provide a membrane-mimetic environment capable of promoting and stabilizing local peptide interactions. Uperin 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!