Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202001509RDOI Listing

Publication Analysis

Top Keywords

sensory neurons
16
vagal sensory
16
iav infection
12
pulmonary infection
8
sensory ganglia
8
infection induced
8
neurons
7
infection
6
vagal
6
sensory
6

Similar Publications

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Cognito Therapeutics, Cambridge, MA, USA.

Background: Preclinical investigations in Alzheimer's disease (AD) have highlighted the efficacy of gamma sensory stimulation in mitigating AD-related pathologies. Cognito Therapeutics, Inc. (Cambridge, MA) has designed the Sensory Stimulation System for safe at-home usage, to induce EEG-confirmed gamma oscillations as a potential treatment for AD.

View Article and Find Full Text PDF

Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.

View Article and Find Full Text PDF

Background: We have been investigating in vivo astrocytic Ca homeostasis in the primary somatosensory cortex (S1) of awake, head-restrained ambulating mice using two-photon technology. Prior results from our lab were obtained in neurons across aging, and in male and female C57Bl6/J mice (Case et al., 2023).

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Faculty of Medicine, Arish University, Arish, North Sinai, Egypt.

Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study's aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer's Dementia (AD).

Methods: Retrospective trials on rodents i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!