Premise: Altingiaceae is a small family with a bimodal Northern Hemisphere distribution in eastern North America and eastern Asia, and a rich Cenozoic fossil record. The charcoalified fossil infructescence Paleoaltingia gen. nov. from Turonian (Late Cretaceous) deposits of New Jersey, provides new evidence of early Altingiaceae reproductive structures and has biogeographical implications in understanding modern distribution.
Methods: Fossils were prepared using standard methods for obtaining and processing mesofossils. The fossils were examined with light microscopy, and scanning electron microscopy for observing structural and anatomical details. Phylogenetic analyses were performed using a combined matrix of molecular and morphological data.
Results: Based on morphological features of the fossil and the phylogenetic analyses, the new genus, Paleoaltingia, with two species (Paleoaltingia ovum-dinosauri and P. polyodonta) is erected. The phylogenetic position of Paleoaltingia confirms affinities with living Altingiaceae.
Conclusions: The combination of characters-simple capitate infructescence, syncarpous bicarpellate, and bilocular ovary, unique sterile phyllome structures-indicates that the fossil taxa have close affinities to modern Altingiaceae. The unique characters of the phyllomes provide new information on the floral diversity of Altingiaceae. The emergence of Paleoaltingia in Late Cretaceous sediments of Northeastern North America represents the earliest fossil record of Altingiaceae and provides new insights into its biogeography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajb2.1618 | DOI Listing |
Mol Phylogenet Evol
December 2024
SNSB-Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-University, Richard-Wagner-Straße 10, D-80333 Munich, Germany.
Disjunct distributions, characterised by spatially separated populations of related species, offer insights into historical biogeographic patterns and evolutionary processes. This study investigates the evolutionary history of the diving beetle subfamily Lancetinae through a phylogenomic approach incorporating ultraconserved elements (UCEs) and heritage genetic markers. Our findings support an early Miocene origin for Lancetinae, with subsequent diversification influenced by historical vicariance events and long-distance dispersal.
View Article and Find Full Text PDFSci Adv
December 2024
Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China.
Crustal thickness and elevation variations control mountain building and climate change at convergent margins. As an archetypal Andean-type convergent margin, eastern Asia preserves voluminous magmas ideal for quantifying these processes and their impacts on climate. Here, we use Sr/Y and Ce/Y proxies to show that the crust experienced alternating thickening and thinning during the Late Mesozoic.
View Article and Find Full Text PDFR Soc Open Sci
December 2024
SNSB, Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany.
As the first group of tetrapods to achieve powered flight, pterosaurs first appeared in the Late Triassic. They proliferated globally, and by the Late Jurassic through the Cretaceous, the majority of these taxa belonged to the clade Monofenestrata (which includes the well-known Pterodactyloidea as its major subclade), typified by their single undivided fenestra anterior to the orbit. Here, a new taxon gen.
View Article and Find Full Text PDFEcol Evol
December 2024
State Key Laboratory of Palaeobiology and Stratigraphy Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing China.
Zootaxa
July 2024
Thrips-iD; Straßburger Straße 37A; 77652 Offenburg; Germany.
The present study provides a first investigation of fossil thrips from the Late Cretaceous. It deals with two specimens-Avithrips yellae gen. et sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!