Objectives: This study aimed to compare the costs of a next-generation sequencing-based (NGS-based) panel testing strategy to those of a single-gene testing-based (SGT-based) strategy, considering different scenarios of clinical practice evolution.
Methods: Three Italian hospitals were analysed, and four different testing pathways (paths 1, 2, 3, and 4) were identified: two for advanced non-small-cell lung cancer (aNSCLC) patients and two for unresectable metastatic colon-rectal cancer (mCRC) patients. For each path, we explored four scenarios considering the current clinical practice and its expected evolution. The 16 testing cases (4 scenarios × 4 paths) were then compared in terms of differential costs between the NGS-based and SGT-based approaches considering personnel, consumables, equipment, and overhead costs. Break-even and sensitivity analyses were performed. Data gathering, aimed at identifying the hospital setup, was performed through a semi-structured questionnaire administered to the professionals involved in testing activities.
Results: The NGS-based strategy was found to be a cost-saving alternative to the SGT-based strategy in 15 of the 16 testing cases. The break-even threshold, the minimum number of patients required to make the NGS-based approach less costly than the SGT-based approach, varied across the testing cases depending on molecular alterations tested, techniques adopted, and specific costs. The analysis found the NGS-based approach to be less costly than the SGT-based approach in nine of the 16 testing cases at any volume of tests performed; in six cases, the NGS-based approach was found to be less costly above a threshold (and in one case, it was found to be always more expensive). Savings obtained using an NGS-based approach ranged from €30 to €1249 per patient; in the unique testing case where NGS was more costly, the additional cost per patient was €25.
Conclusions: An NGS-based approach may be less costly than an SGT-based approach; also, generated savings increase with the number of patients and different molecular alterations tested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160052 | PMC |
http://dx.doi.org/10.1007/s41669-020-00249-0 | DOI Listing |
NPJ Precis Oncol
January 2025
Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
Next-generation sequencing (NGS) offers a promising approach for differentiating multiple primary lung cancers (MPLC) from intrapulmonary metastasis (IPM), though panel selection and clonal interpretation remain challenging. Whole-exome sequencing (WES) data from 80 lung cancer samples were utilized to simulate MPLC and IPM, with various sequenced panels constructed through gene subsampling. Two clonal interpretation approaches primarily applied in clinical practice, MoleA (based on shared mutation comparison) and MoleB (based on probability calculation), were subsequently evaluated.
View Article and Find Full Text PDFBiotechniques
December 2024
Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia.
In 2006, a PCR method was introduced to subtype by Sanger sequencing of an ≈610 bp amplicon of the 18S rRNA gene. This method, known as barcoding-PCR, has become widespread, although the primer pair used can amplify non- sequences, which can result in false positives. Barcoding-PCR is most effective with DNA extracted from cultures, limiting its sensitivity when used directly with stool samples.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
Next-generation sequencing (NGS) has revolutionized personalized oncology care by providing exceptional insights into the complex genomic landscape. NGS offers comprehensive cancer profiling, which enables clinicians and researchers to better understand the molecular basis of cancer and to tailor treatment strategies accordingly. Targeted therapies based on genomic alterations identified through NGS have shown promise in improving patient outcomes across various cancer types, circumventing resistance mechanisms and enhancing treatment efficacy.
View Article and Find Full Text PDFAdv Neurobiol
November 2024
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
J Hum Genet
November 2024
Laboratory of Basic Medicine, Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, Fujian, China.
In this study, we aimed to apply preimplantation genetic testing for monogenic disorders (PGT-M) based on mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) to block the transmission of inborn errors of metabolism (IEMs). After the disease-causing variants were identified through genetic testing, four carrier couples having children affected with IEMs, including methylmalonic aciduria, glutaric acidemia type 1, beta-ketothiolase deficiency, and ornithine transcarbamylase deficiency, sought PGT-M. A series of PGT procedures involving intracytoplasmic sperm injection, blastocyst culture, biopsy of trophectoderm cells, and next-generation sequencing (NGS)-based MARSALA, was performed to provide comprehensive chromosome screening and variant gene analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!