Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Red rot caused by Colletotrichum falcatum, is one of the economically important disease of sugarcane and breeding for resistant varieties is considered to be the major solution to manage the disease. However, breakdown of red rot resistance become usual phenomenon due to development of newer races by culture adaptation on newly released varieties. Hence it is needed to characterize the genes responsible for pathogen virulence in order to take care of host resistance or to manage the disease by other methods. The transcript studies gave foundation to characterize the huge number of pathogenicity determinants and their role in pathogenesis. Here we studied role of two important genes viz., Glucose Transporter (GT) and Sucrose Non-Fermenting1 (SNF1) during pathogenesis of C. falcatum, which said to be involved in carbon source metabolism. Sugar metabolism has a vital role in disease progression of C. falcatum by regulating their cell growth, metabolism and development of the pathogen during various stages of infection. The present study was aimed to find out the role of GT and SNF1 genes in response to pathogenicity by RNA silencing (RNAi) approach. Knock-down of the target pathogenicity gene homologs in standard C. falcatum isolate Cf671 was carried out by amplifying sense and antisense fragments of targets individually using pSilent-1 vector. The expression cassette was cloned into the binary vector pCAMBIA1300 followed by fungal transformation through Agarobacterium mediated transformation. Resulted mutants of both the genes showed less virulence compared to wild type isolate. Simultaneously, both the mutants did not produce spores. Moreover, the molecular confirmation of the mutants displayed the expression of hygromycin gene with reduced expression of the target gene during host-pathogen interaction. Knockdown of the pathogenicity related genes (GT and SNF1) by RNAi approach corroborate the possible role of the genes in causing the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06140-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!