Neutrophils are recruited rapidly to sites of infection in response to host- and/or microbe-derived proinflammatory molecules. At such sites, neutrophils phagocytose microbes and are activated to produce superoxide and other reactive oxygen species (ROS). In addition, neutrophils contain stores of antimicrobial peptides and enzymes that work in concert with ROS to kill ingested microbes. Neutrophils can also release chromosomal DNA bound with antimicrobial peptides and enzymes to form web-like structures known as extracellular traps. Neutrophil extracellular traps (NETs) have been reported to ensnare and kill microbes and are commonly considered to be an important component of innate host defense. Notably, the formation of NETs is most often reported as a cytolytic process. Whereas intraphagosomal killing of microbes sequesters cytotoxic antimicrobial molecules that would otherwise damage host tissues, the formation of NETs and associated extracellular release of these molecules can contribute to host tissue destruction and disease. Here we compare and contrast phagocytosis and NETs in host defense, with emphasis on recent studies of NETs that ultimately underscore the importance of phagocytosis as the primary means by which neutrophils eliminate microbes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886055 | PMC |
http://dx.doi.org/10.12703/r/9-25 | DOI Listing |
Microb Pathog
December 2024
MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, PR China. Electronic address:
J Control Release
December 2024
Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China. Electronic address:
Neutrophil extracellular traps (NETs) promote neovascularization during the acute phase after ocular chemical injury, while the local inflammatory acidic environment delays post-injury repair. Currently, the mechanism of NETs promoting neovascularization has not been fully elucidated, and there is a lack of therapeutic strategies to effectively improve the local microenvironment for corneal repair. In this study, we validated the NETs-M2-angiogenic pathway after injury.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Emergency Medicine, Stanford University, 240 Pasteur Drive Rm 0300 Stanford, CA 94305, USA.
The mechanisms of bacterial killing by neutrophil extracellular traps (NETs) are unclear. DNA, the largest component of NETs was believed to merely be a scaffold with antimicrobial activity only through the charge of the backbone. Here, we demonstrate for the first time that NETs DNA is beyond a mere scaffold to trap bacteria and it produces hydroxyl free radicals through the spatially concentrated G-quadruplex/hemin DNAzyme complexes, driving bactericidal effects.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
Adverse aortic remodeling increases the risk of aorta-related adverse events (AAEs) after thoracic endovascular aortic repair (TEVAR) and affects the overall prognosis of aortic dissection (AD). It is imperative to delve into the exploration of prognostic indicators to streamline the identification of individuals at elevated risk for postoperative AAEs, and therapeutic targets to optimize the efficacy of TEVAR for patients with AD. Here, we perform proteomic and single-cell transcriptomic analyses of peripheral blood and aortic lesions, respectively, from patients with AD and healthy subjects.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!