Epithelial-to-mesenchymal transition (EMT), an evolutionary conserved phenomenon, has been extensively studied to address the unresolved variable treatment response across therapeutic regimes in cancer subtypes. EMT has long been envisaged to regulate tumor invasion, migration, and therapeutic resistance during tumorigenesis. However, recently it has been highlighted that EMT involves an intermediate partial EMT (pEMT) phenotype, defined by incomplete loss of epithelial markers and incomplete gain of mesenchymal markers. It has been further emphasized that pEMT transition involves a spectrum of intermediate hybrid states on either side of pEMT spectrum. Emerging evidence underlines bi-directional crosstalk between tumor cells and surrounding microenvironment in acquisition of pEMT phenotype. Although much work is still ongoing to gain mechanistic insights into regulation of pEMT phenotype, it is evident that pEMT plays a critical role in tumor aggressiveness, invasion, migration, and metastasis along with therapeutic resistance. In this review, we focus on important role of tumor-intrinsic factors and tumor microenvironment in driving pEMT and emphasize that engineered controlled microenvironments are instrumental to provide mechanistic insights into pEMT biology. We also discuss the significance of pEMT in regulating hallmarks of tumor progression i.e. cell cycle regulation, collective migration, and therapeutic resistance. Although constantly evolving, current progress and momentum in the pEMT field holds promise to unravel new therapeutic targets to halt tumor progression at early stages as well as tackle the complex therapeutic resistance observed across many cancer types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892926 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102113 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Rehabilitation Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Sarcopenia is closely associated with a poor quality of life and mortality, and its prevention and treatment represent a critical area of research. Resistance training is an effective treatment for older adults with sarcopenia. However, they often face challenges when receiving traditional rehabilitation treatments at hospitals.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.
Background: To assess the impact of attaining aggressive beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) targets on clinical efficacy in critical orthotopic liver transplant (OLT) recipients with documented early Gram-negative infections.
Methods: OLT recipients admitted to the post-transplant ICU between June 2021 and May 2024 having documented Gram-negative infections treated with targeted therapy continuous infusion (CI) beta-lactams, and undergoing therapeutic drug monitoring (TDM)-guided beta-lactam dosing adjustment in the first 72 hours were prospectively enrolled. Free steady-state concentrations (fCss) of beta-lactams (BL) and/or of beta-lactamase inhibitors (BLI) were calculated, and aggressive PK/PD target attainment was measured.
Diabetes
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.
View Article and Find Full Text PDFDiabetes
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
PPARγ is the pharmacological target of thiazolidinediones (TZDs), potent insulin sensitizers that prevent metabolic disease morbidity but are accompanied by side effects such as weight gain, in part due to non-physiological transcriptional agonism. Using high throughput genome engineering, we targeted nonsense mutations to every exon of PPARG, finding an ATG in Exon 2 (chr3:12381414, CCDS2609 c.A403) that functions as an alternative translational start site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!