In the present investigation, a totally of 673 newly designed 2,6-diphenyl piperidin-4-one derivatives are docked with 2B7N protein of which causes peptic ulcer disease. The docking studies revealed that 2,6-bis(3,4-dihydroxyphenyl)-3-phenethylpiperidin-4-one (BDPO) is identified as the most promising new compound with active nature against 2B7N with a binding affinity value of -8.0 Kcal/mol. The molecular structure of BDPO has been analyzed by DFT based theoretical calculations at the B3LYP/6-311++G(d,p) level of theory using the Gaussian 16W program package. The molecular electrostatic potential, Frontier molecular energy gap, and Mulliken population analysis have been used to understand the reactive site of the molecule. The stability and hyper-conjugative interactions were studied by natural bond orbital analysis (NBO) based on a second-order perturbation approach. The thermodynamic properties like thermal energy, specific heat capacity, and entropy at different temperatures were also calculated. The calculated first-order hyper polarizability results show that the title compound is 25.3 times greater than that of standard reference material, urea. So the title molecule is a good non-linear material. Also, this molecule has Van der Waals attraction and steric effect. It undergoes local excitation for the first five excitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890216PMC
http://dx.doi.org/10.1016/j.heliyon.2021.e06127DOI Listing

Publication Analysis

Top Keywords

design docking
4
docking dft
4
dft investigations
4
investigations 26-bis34-dihydroxyphenyl-3-phenethylpiperidin-4-one
4
26-bis34-dihydroxyphenyl-3-phenethylpiperidin-4-one investigation
4
investigation totally
4
totally 673
4
673 newly
4
newly designed
4
designed 26-diphenyl
4

Similar Publications

p97 (also known as valosin-containing protein, VCP) is a member of the AAA+ ATPase family and is intimately associated with protein quality control and homeostasis regulation. Therefore, pharmaceutical inhibition of p97 has been actively pursued as an anticancer strategy. Recently, p97 has emerged as an important pro-viral host factor and p97 inhibitors are being evaluated as potential antiviral agents.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

Background: In this study, two chalcone analogs were synthesized through in silico and experimental methods, and their potential to inhibit the lipoxygenase enzyme, which plays a role in the inflammation pathway, was assessed. Specifically, this study is a continuation of previous research in which chalcone derivatives were synthesized and characterized.

Objectives/methods: In the current work, we present the re-synthesis of two chalcones, with a focus on their docking studies, NMR analysis, and dynamic simulations.

View Article and Find Full Text PDF

Background: In the era of resistance, the design and search for new "small" molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as "building blocks" and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect.

View Article and Find Full Text PDF

Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!