Colorimetric RhoB GTPase Activity Assay.

Bio Protoc

Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.

Published: May 2020

The Ras homologous protein (Rho) GTPase subfamily, including RhoA, RhoB, and RhoC are small molecules (~21 kDa) that act as molecular switches in a wide range of signaling pathways to orchestrate biological processes associated with both physiological and tumorigenic cellular states. The Rho GTPases are crucial regulators of actin cytoskeleton rearrangements and FA dynamics and are required for effective cell migration and invasion, as well as cell cycle progression and apoptosis. The Rho GTPases activity is regulated by conformational switching between GTP-bound (active) and GDP-bound (inactive) states. This GTP/GDP cycling is tightly controlled by the guanine nucleotide exchange factors (GEFs), which function as activators by catalyzing the exchange of GDP for GTP and by the GTPase-activating proteins (GAPs), which enable hydrolysis of GTP leading to the Rho GTPase inactivation. Here, we describe a detailed protocol to perform a RhoB G-LISA activation assay to detect the level of GTP-loaded RhoB . This is the first colorimetric assay designed to specifically measure RhoB activation. This method was developed by adapting the RhoA G-LISA Activation Assay Kit (Cytoskeleton, Inc.) and allow the precise measurement of RhoB activity in less than 3 hours. This rapid methodology can be broadly used to assess the level of GTP-loaded RhoB in any kind of cellular models, to appreciate either the role RhoB activation in physiological processes, diseases, oncogenic transformation or for drug discovery in high throughput screens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842779PMC
http://dx.doi.org/10.21769/BioProtoc.3609DOI Listing

Publication Analysis

Top Keywords

rho gtpase
8
rho gtpases
8
g-lisa activation
8
activation assay
8
level gtp-loaded
8
gtp-loaded rhob
8
rhob activation
8
rhob
7
colorimetric rhob
4
rhob gtpase
4

Similar Publications

Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

The Expression Regulation and Cancer-Promoting Roles of RACGAP1.

Biomolecules

December 2024

Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.

RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!